Struct flow_sdk::algorithms::secp256k1::rand::rngs::adapter::ReseedingRng [−][src]
pub struct ReseedingRng<R, Rsdr>(_)
where
R: BlockRngCore + SeedableRng,
Rsdr: RngCore;
Expand description
A wrapper around any PRNG that implements BlockRngCore
, that adds the
ability to reseed it.
ReseedingRng
reseeds the underlying PRNG in the following cases:
- On a manual call to
reseed()
. - After
clone()
, the clone will be reseeded on first use. - After a process is forked, the RNG in the child process is reseeded within
the next few generated values, depending on the block size of the
underlying PRNG. For
ChaChaCore
andHc128Core
this is a maximum of 15u32
values before reseeding. - After the PRNG has generated a configurable number of random bytes.
When should reseeding after a fixed number of generated bytes be used?
Reseeding after a fixed number of generated bytes is never strictly necessary. Cryptographic PRNGs don’t have a limited number of bytes they can output, or at least not a limit reachable in any practical way. There is no such thing as ‘running out of entropy’.
Occasionally reseeding can be seen as some form of ‘security in depth’. Even if in the future a cryptographic weakness is found in the CSPRNG being used, or a flaw in the implementation, occasionally reseeding should make exploiting it much more difficult or even impossible.
Use ReseedingRng::new
with a threshold
of 0
to disable reseeding
after a fixed number of generated bytes.
Error handling
Although unlikely, reseeding the wrapped PRNG can fail. ReseedingRng
will
never panic but try to handle the error intelligently through some
combination of retrying and delaying reseeding until later.
If handling the source error fails ReseedingRng
will continue generating
data from the wrapped PRNG without reseeding.
Manually calling reseed()
will not have this retry or delay logic, but
reports the error.
Example
use rand::prelude::*;
use rand_chacha::ChaChaCore; // Internal part of ChaChaRng that
// implements BlockRngCore
use rand::rngs::OsRng;
use rand::rngs::adapter::ReseedingRng;
let prng = ChaChaCore::from_entropy();
let reseeder = OsRng::new().unwrap();
let mut reseeding_rng = ReseedingRng::new(prng, 0, reseeder);
println!("{}", reseeding_rng.gen::<u64>());
let mut cloned_rng = reseeding_rng.clone();
assert!(reseeding_rng.gen::<u64>() != cloned_rng.gen::<u64>());
Implementations
Create a new ReseedingRng
from an existing PRNG, combined with a RNG
to use as reseeder.
threshold
sets the number of generated bytes after which to reseed the
PRNG. Set it to zero to never reseed based on the number of generated
values.
Trait Implementations
impl<R, Rsdr> Clone for ReseedingRng<R, Rsdr> where
R: BlockRngCore + SeedableRng + Clone,
Rsdr: RngCore + Clone,
impl<R, Rsdr> Clone for ReseedingRng<R, Rsdr> where
R: BlockRngCore + SeedableRng + Clone,
Rsdr: RngCore + Clone,
impl<R, Rsdr> Debug for ReseedingRng<R, Rsdr> where
R: Debug + BlockRngCore + SeedableRng,
Rsdr: Debug + RngCore,
impl<R, Rsdr> Debug for ReseedingRng<R, Rsdr> where
R: Debug + BlockRngCore + SeedableRng,
Rsdr: Debug + RngCore,
impl<R, Rsdr> RngCore for ReseedingRng<R, Rsdr> where
Rsdr: RngCore,
R: BlockRngCore<Item = u32> + SeedableRng,
<R as BlockRngCore>::Results: AsRef<[u32]>,
<R as BlockRngCore>::Results: AsMut<[u32]>,
impl<R, Rsdr> RngCore for ReseedingRng<R, Rsdr> where
Rsdr: RngCore,
R: BlockRngCore<Item = u32> + SeedableRng,
<R as BlockRngCore>::Results: AsRef<[u32]>,
<R as BlockRngCore>::Results: AsMut<[u32]>,
impl<R, Rsdr> CryptoRng for ReseedingRng<R, Rsdr> where
R: BlockRngCore + SeedableRng + CryptoRng,
Rsdr: RngCore + CryptoRng,
Auto Trait Implementations
impl<R, Rsdr> RefUnwindSafe for ReseedingRng<R, Rsdr> where
R: RefUnwindSafe,
Rsdr: RefUnwindSafe,
<R as BlockRngCore>::Results: RefUnwindSafe,
impl<R, Rsdr> Send for ReseedingRng<R, Rsdr> where
R: Send,
Rsdr: Send,
<R as BlockRngCore>::Results: Send,
impl<R, Rsdr> Sync for ReseedingRng<R, Rsdr> where
R: Sync,
Rsdr: Sync,
<R as BlockRngCore>::Results: Sync,
impl<R, Rsdr> Unpin for ReseedingRng<R, Rsdr> where
R: Unpin,
Rsdr: Unpin,
<R as BlockRngCore>::Results: Unpin,
impl<R, Rsdr> UnwindSafe for ReseedingRng<R, Rsdr> where
R: UnwindSafe,
Rsdr: UnwindSafe,
<R as BlockRngCore>::Results: UnwindSafe,
Blanket Implementations
Mutably borrows from an owned value. Read more
Wrap the input message T
in a tonic::Request
fn gen_range<T, B1, B2>(&mut self, low: B1, high: B2) -> T where
T: SampleUniform,
B1: SampleBorrow<T>,
B2: SampleBorrow<T>,
fn gen_range<T, B1, B2>(&mut self, low: B1, high: B2) -> T where
T: SampleUniform,
B1: SampleBorrow<T>,
B2: SampleBorrow<T>,
Generate a random value in the range [low
, high
), i.e. inclusive of
low
and exclusive of high
. Read more
Sample a new value, using the given distribution. Read more
fn sample_iter<T, D>(&'a mut self, distr: &'a D) -> DistIter<'a, D, Self, T>ⓘ where
D: Distribution<T>,
fn sample_iter<T, D>(&'a mut self, distr: &'a D) -> DistIter<'a, D, Self, T>ⓘ where
D: Distribution<T>,
Create an iterator that generates values using the given distribution. Read more
Fill dest
entirely with random bytes (uniform value distribution),
where dest
is any type supporting AsByteSliceMut
, namely slices
and arrays over primitive integer types (i8
, i16
, u32
, etc.). Read more
Fill dest
entirely with random bytes (uniform value distribution),
where dest
is any type supporting AsByteSliceMut
, namely slices
and arrays over primitive integer types (i8
, i16
, u32
, etc.). Read more
Return a bool with a probability p
of being true. Read more
Return a bool with a probability of numerator/denominator
of being
true. I.e. gen_ratio(2, 3)
has chance of 2 in 3, or about 67%, of
returning true. If numerator == denominator
, then the returned value
is guaranteed to be true
. If numerator == 0
, then the returned
value is guaranteed to be false
. Read more
use SliceRandom::choose instead
Return a random element from values
. Read more
use SliceRandom::choose_mut instead
Return a mutable pointer to a random element from values
. Read more
Attaches the provided Subscriber
to this type, returning a
WithDispatch
wrapper. Read more
Attaches the current default Subscriber
to this type, returning a
WithDispatch
wrapper. Read more