Trait flow_sdk::algorithms::secp256k1::rand::Rng [−][src]
pub trait Rng: RngCore {
fn gen<T>(&mut self) -> T
where
Standard: Distribution<T>,
{ ... }
fn gen_range<T, B1, B2>(&mut self, low: B1, high: B2) -> T
where
T: SampleUniform,
B1: SampleBorrow<T>,
B2: SampleBorrow<T>,
{ ... }
fn sample<T, D>(&mut self, distr: D) -> T
where
D: Distribution<T>,
{ ... }
fn sample_iter<T, D>(&'a mut self, distr: &'a D) -> DistIter<'a, D, Self, T>ⓘ
where
D: Distribution<T>,
{ ... }
fn fill<T>(&mut self, dest: &mut T)
where
T: AsByteSliceMut + ?Sized,
{ ... }
fn try_fill<T>(&mut self, dest: &mut T) -> Result<(), Error>
where
T: AsByteSliceMut + ?Sized,
{ ... }
fn gen_bool(&mut self, p: f64) -> bool { ... }
fn gen_ratio(&mut self, numerator: u32, denominator: u32) -> bool { ... }
fn choose<T>(&mut self, values: &'a [T]) -> Option<&'a T> { ... }
fn choose_mut<T>(&mut self, values: &'a mut [T]) -> Option<&'a mut T> { ... }
fn shuffle<T>(&mut self, values: &mut [T]) { ... }
}
Expand description
An automatically-implemented extension trait on RngCore
providing high-level
generic methods for sampling values and other convenience methods.
This is the primary trait to use when generating random values.
Generic usage
The basic pattern is fn foo<R: Rng + ?Sized>(rng: &mut R)
. Some
things are worth noting here:
- Since
Rng: RngCore
and everyRngCore
implementsRng
, it makes no difference whether we useR: Rng
orR: RngCore
. - The
+ ?Sized
un-bounding allows functions to be called directly on type-erased references; i.e.foo(r)
wherer: &mut RngCore
. Without this it would be necessary to writefoo(&mut r)
.
An alternative pattern is possible: fn foo<R: Rng>(rng: R)
. This has some
trade-offs. It allows the argument to be consumed directly without a &mut
(which is how from_rng(thread_rng())
works); also it still works directly
on references (including type-erased references). Unfortunately within the
function foo
it is not known whether rng
is a reference type or not,
hence many uses of rng
require an extra reference, either explicitly
(distr.sample(&mut rng)
) or implicitly (rng.gen()
); one may hope the
optimiser can remove redundant references later.
Example:
use rand::Rng;
fn foo<R: Rng + ?Sized>(rng: &mut R) -> f32 {
rng.gen()
}
Provided methods
fn gen<T>(&mut self) -> T where
Standard: Distribution<T>,
fn gen<T>(&mut self) -> T where
Standard: Distribution<T>,
fn gen_range<T, B1, B2>(&mut self, low: B1, high: B2) -> T where
T: SampleUniform,
B1: SampleBorrow<T>,
B2: SampleBorrow<T>,
fn gen_range<T, B1, B2>(&mut self, low: B1, high: B2) -> T where
T: SampleUniform,
B1: SampleBorrow<T>,
B2: SampleBorrow<T>,
Generate a random value in the range [low
, high
), i.e. inclusive of
low
and exclusive of high
.
This function is optimised for the case that only a single sample is
made from the given range. See also the Uniform
distribution
type which may be faster if sampling from the same range repeatedly.
Panics
Panics if low >= high
.
Example
use rand::{thread_rng, Rng};
let mut rng = thread_rng();
let n: u32 = rng.gen_range(0, 10);
println!("{}", n);
let m: f64 = rng.gen_range(-40.0f64, 1.3e5f64);
println!("{}", m);
fn sample<T, D>(&mut self, distr: D) -> T where
D: Distribution<T>,
fn sample<T, D>(&mut self, distr: D) -> T where
D: Distribution<T>,
Sample a new value, using the given distribution.
Example
use rand::{thread_rng, Rng};
use rand::distributions::Uniform;
let mut rng = thread_rng();
let x = rng.sample(Uniform::new(10u32, 15));
// Type annotation requires two types, the type and distribution; the
// distribution can be inferred.
let y = rng.sample::<u16, _>(Uniform::new(10, 15));
fn sample_iter<T, D>(&'a mut self, distr: &'a D) -> DistIter<'a, D, Self, T>ⓘ where
D: Distribution<T>,
fn sample_iter<T, D>(&'a mut self, distr: &'a D) -> DistIter<'a, D, Self, T>ⓘ where
D: Distribution<T>,
Create an iterator that generates values using the given distribution.
Example
use rand::{thread_rng, Rng};
use rand::distributions::{Alphanumeric, Uniform, Standard};
let mut rng = thread_rng();
// Vec of 16 x f32:
let v: Vec<f32> = thread_rng().sample_iter(&Standard).take(16).collect();
// String:
let s: String = rng.sample_iter(&Alphanumeric).take(7).collect();
// Combined values
println!("{:?}", thread_rng().sample_iter(&Standard).take(5)
.collect::<Vec<(f64, bool)>>());
// Dice-rolling:
let die_range = Uniform::new_inclusive(1, 6);
let mut roll_die = rng.sample_iter(&die_range);
while roll_die.next().unwrap() != 6 {
println!("Not a 6; rolling again!");
}
fn fill<T>(&mut self, dest: &mut T) where
T: AsByteSliceMut + ?Sized,
fn fill<T>(&mut self, dest: &mut T) where
T: AsByteSliceMut + ?Sized,
Fill dest
entirely with random bytes (uniform value distribution),
where dest
is any type supporting AsByteSliceMut
, namely slices
and arrays over primitive integer types (i8
, i16
, u32
, etc.).
On big-endian platforms this performs byte-swapping to ensure portability of results from reproducible generators.
This uses fill_bytes
internally which may handle some RNG errors
implicitly (e.g. waiting if the OS generator is not ready), but panics
on other errors. See also try_fill
which returns errors.
Example
use rand::{thread_rng, Rng};
let mut arr = [0i8; 20];
thread_rng().fill(&mut arr[..]);
Fill dest
entirely with random bytes (uniform value distribution),
where dest
is any type supporting AsByteSliceMut
, namely slices
and arrays over primitive integer types (i8
, i16
, u32
, etc.).
On big-endian platforms this performs byte-swapping to ensure portability of results from reproducible generators.
This uses try_fill_bytes
internally and forwards all RNG errors. In
some cases errors may be resolvable; see ErrorKind
and
documentation for the RNG in use. If you do not plan to handle these
errors you may prefer to use fill
.
Example
use rand::{thread_rng, Rng};
let mut arr = [0u64; 4];
thread_rng().try_fill(&mut arr[..])?;
Return a bool with a probability of numerator/denominator
of being
true. I.e. gen_ratio(2, 3)
has chance of 2 in 3, or about 67%, of
returning true. If numerator == denominator
, then the returned value
is guaranteed to be true
. If numerator == 0
, then the returned
value is guaranteed to be false
.
See also the Bernoulli
distribution, which may be faster if
sampling from the same numerator
and denominator
repeatedly.
Panics
If denominator == 0
or numerator > denominator
.
Example
use rand::{thread_rng, Rng};
let mut rng = thread_rng();
println!("{}", rng.gen_ratio(2, 3));
use SliceRandom::choose instead
Return a random element from values
.
Deprecated: use seq::SliceRandom::choose
instead.
fn choose_mut<T>(&mut self, values: &'a mut [T]) -> Option<&'a mut T>
fn choose_mut<T>(&mut self, values: &'a mut [T]) -> Option<&'a mut T>
use SliceRandom::choose_mut instead
Return a mutable pointer to a random element from values
.
Deprecated: use seq::SliceRandom::choose_mut
instead.
use SliceRandom::shuffle instead
Shuffle a mutable slice in place.
Deprecated: use seq::SliceRandom::shuffle
instead.