1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
// Bitcoin secp256k1 bindings
// Written in 2014 by
//   Dawid Ciężarkiewicz
//   Andrew Poelstra
//
// To the extent possible under law, the author(s) have dedicated all
// copyright and related and neighboring rights to this software to
// the public domain worldwide. This software is distributed without
// any warranty.
//
// You should have received a copy of the CC0 Public Domain Dedication
// along with this software.
// If not, see <http://creativecommons.org/publicdomain/zero/1.0/>.
//
//! # secp256k1-sys FFI bindings
//! Direct bindings to the underlying C library functions. These should
//! not be needed for most users.

// Coding conventions
#![deny(non_upper_case_globals)]
#![deny(non_camel_case_types)]
#![deny(non_snake_case)]
#![deny(unused_mut)]

#![cfg_attr(all(not(test), not(feature = "std")), no_std)]
#[cfg(any(test, feature = "std"))]
extern crate core;

#[cfg(fuzzing)]
const THIS_UNUSED_CONSTANT_IS_YOUR_WARNING_THAT_ALL_THE_CRYPTO_IN_THIS_LIB_IS_DISABLED_FOR_FUZZING: usize = 0;

#[macro_use]
mod macros;
pub mod types;

#[cfg(feature = "recovery")]
pub mod recovery;

use core::{hash, slice, ptr};
use types::*;

/// Flag for context to enable no precomputation
pub const SECP256K1_START_NONE: c_uint = 1;
/// Flag for context to enable verification precomputation
pub const SECP256K1_START_VERIFY: c_uint = 1 | (1 << 8);
/// Flag for context to enable signing precomputation
pub const SECP256K1_START_SIGN: c_uint = 1 | (1 << 9);
/// Flag for keys to indicate uncompressed serialization format
#[allow(unused_parens)]
pub const SECP256K1_SER_UNCOMPRESSED: c_uint = (1 << 1);
/// Flag for keys to indicate compressed serialization format
pub const SECP256K1_SER_COMPRESSED: c_uint = (1 << 1) | (1 << 8);

/// A nonce generation function. Ordinary users of the library
/// never need to see this type; only if you need to control
/// nonce generation do you need to use it. I have deliberately
/// made this hard to do: you have to write your own wrapper
/// around the FFI functions to use it. And it's an unsafe type.
/// Nonces are generated deterministically by RFC6979 by
/// default; there should be no need to ever change this.
pub type NonceFn = Option<unsafe extern "C" fn(
    nonce32: *mut c_uchar,
    msg32: *const c_uchar,
    key32: *const c_uchar,
    algo16: *const c_uchar,
    data: *mut c_void,
    attempt: c_uint,
) -> c_int>;

/// Hash function to use to post-process an ECDH point to get
/// a shared secret.
pub type EcdhHashFn = Option<unsafe extern "C" fn(
    output: *mut c_uchar,
    x: *const c_uchar,
    y: *const c_uchar,
    data: *mut c_void,
) -> c_int>;

///  Same as secp256k1_nonce function with the exception of accepting an
///  additional pubkey argument and not requiring an attempt argument. The pubkey
///  argument can protect signature schemes with key-prefixed challenge hash
///  inputs against reusing the nonce when signing with the wrong precomputed
///  pubkey.
pub type SchnorrNonceFn = Option<unsafe extern "C" fn(
    nonce32: *mut c_uchar,
    msg32: *const c_uchar,
    key32: *const c_uchar,
    xonly_pk32: *const c_uchar,
    algo16: *const c_uchar,
    data: *mut c_void,
) -> c_int>;

/// A Secp256k1 context, containing various precomputed values and such
/// needed to do elliptic curve computations. If you create one of these
/// with `secp256k1_context_create` you MUST destroy it with
/// `secp256k1_context_destroy`, or else you will have a memory leak.
#[derive(Clone, Debug)]
#[repr(C)] pub struct Context(c_int);

/// Library-internal representation of a Secp256k1 public key
#[repr(C)]
pub struct PublicKey([c_uchar; 64]);
impl_array_newtype!(PublicKey, c_uchar, 64);
impl_raw_debug!(PublicKey);

impl PublicKey {
    /// Creates an "uninitialized" FFI public key which is zeroed out
    ///
    /// If you pass this to any FFI functions, except as an out-pointer,
    /// the result is likely to be an assertation failure and process
    /// termination.
    pub unsafe fn new() -> Self {
        Self::from_array_unchecked([0; 64])
    }

    /// Create a new public key usable for the FFI interface from raw bytes
    ///
    /// Does not check the validity of the underlying representation. If it is
    /// invalid the result may be assertation failures (and process aborts) from
    /// the underlying library. You should not use this method except with data
    /// that you obtained from the FFI interface of the same version of this
    /// library.
    pub unsafe fn from_array_unchecked(data: [c_uchar; 64]) -> Self {
        PublicKey(data)
    }

    /// Returns the underlying FFI opaque representation of the public key
    ///
    /// You should not use this unless you really know what you are doing. It is
    /// essentially only useful for extending the FFI interface itself.
    pub fn underlying_bytes(self) -> [c_uchar; 64] {
        self.0
    }
}

impl hash::Hash for PublicKey {
    fn hash<H: hash::Hasher>(&self, state: &mut H) {
        state.write(&self.0)
    }
}

/// Library-internal representation of a Secp256k1 signature
#[repr(C)]
pub struct Signature([c_uchar; 64]);
impl_array_newtype!(Signature, c_uchar, 64);
impl_raw_debug!(Signature);

impl Signature {
    /// Creates an "uninitialized" FFI signature which is zeroed out
    ///
    /// If you pass this to any FFI functions, except as an out-pointer,
    /// the result is likely to be an assertation failure and process
    /// termination.
    pub unsafe fn new() -> Self {
        Self::from_array_unchecked([0; 64])
    }

    /// Create a new signature usable for the FFI interface from raw bytes
    ///
    /// Does not check the validity of the underlying representation. If it is
    /// invalid the result may be assertation failures (and process aborts) from
    /// the underlying library. You should not use this method except with data
    /// that you obtained from the FFI interface of the same version of this
    /// library.
    pub unsafe fn from_array_unchecked(data: [c_uchar; 64]) -> Self {
        Signature(data)
    }

    /// Returns the underlying FFI opaque representation of the signature
    ///
    /// You should not use this unless you really know what you are doing. It is
    /// essentially only useful for extending the FFI interface itself.
    pub fn underlying_bytes(self) -> [c_uchar; 64] {
        self.0
    }
}

#[repr(C)]
pub struct XOnlyPublicKey([c_uchar; 64]);
impl_array_newtype!(XOnlyPublicKey, c_uchar, 64);
impl_raw_debug!(XOnlyPublicKey);

impl XOnlyPublicKey {
    /// Creates an "uninitialized" FFI x-only public key which is zeroed out
    ///
    /// If you pass this to any FFI functions, except as an out-pointer,
    /// the result is likely to be an assertation failure and process
    /// termination.
    pub unsafe fn new() -> Self {
        Self::from_array_unchecked([0; 64])
    }

    /// Create a new x-only public key usable for the FFI interface from raw bytes
    ///
    /// Does not check the validity of the underlying representation. If it is
    /// invalid the result may be assertation failures (and process aborts) from
    /// the underlying library. You should not use this method except with data
    /// that you obtained from the FFI interface of the same version of this
    /// library.
    pub unsafe fn from_array_unchecked(data: [c_uchar; 64]) -> Self {
        XOnlyPublicKey(data)
    }

    /// Returns the underlying FFI opaque representation of the x-only public key
    ///
    /// You should not use this unless you really know what you are doing. It is
    /// essentially only useful for extending the FFI interface itself.
    pub fn underlying_bytes(self) -> [c_uchar; 64] {
        self.0
    }
}

impl hash::Hash for XOnlyPublicKey {
    fn hash<H: hash::Hasher>(&self, state: &mut H) {
        state.write(&self.0)
    }
}

#[repr(C)]
pub struct KeyPair([c_uchar; 96]);
impl_array_newtype!(KeyPair, c_uchar, 96);
impl_raw_debug!(KeyPair);

impl KeyPair {
    /// Creates an "uninitialized" FFI keypair which is zeroed out
    ///
    /// If you pass this to any FFI functions, except as an out-pointer,
    /// the result is likely to be an assertation failure and process
    /// termination.
    pub unsafe fn new() -> Self {
        Self::from_array_unchecked([0; 96])
    }

    /// Create a new keypair usable for the FFI interface from raw bytes
    ///
    /// Does not check the validity of the underlying representation. If it is
    /// invalid the result may be assertation failures (and process aborts) from
    /// the underlying library. You should not use this method except with data
    /// that you obtained from the FFI interface of the same version of this
    /// library.
    pub unsafe fn from_array_unchecked(data: [c_uchar; 96]) -> Self {
        KeyPair(data)
    }

    /// Returns the underlying FFI opaque representation of the x-only public key
    ///
    /// You should not use this unless you really know what you are doing. It is
    /// essentially only useful for extending the FFI interface itself.
    pub fn underlying_bytes(self) -> [c_uchar; 96] {
        self.0
    }
}

impl hash::Hash for KeyPair {
    fn hash<H: hash::Hasher>(&self, state: &mut H) {
        state.write(&self.0)
    }
}

extern "C" {
    /// Default ECDH hash function
    #[cfg_attr(not(rust_secp_no_symbol_renaming), link_name = "rustsecp256k1_v0_4_1_ecdh_hash_function_default")]
    pub static secp256k1_ecdh_hash_function_default: EcdhHashFn;

    #[cfg_attr(not(rust_secp_no_symbol_renaming), link_name = "rustsecp256k1_v0_4_1_nonce_function_rfc6979")]
    pub static secp256k1_nonce_function_rfc6979: NonceFn;

    #[cfg_attr(not(rust_secp_no_symbol_renaming), link_name = "rustsecp256k1_v0_4_1_nonce_function_default")]
    pub static secp256k1_nonce_function_default: NonceFn;

    #[cfg_attr(not(rust_secp_no_symbol_renaming), link_name = "rustsecp256k1_v0_4_1_nonce_function_bip340")]
    pub static secp256k1_nonce_function_bip340: SchnorrNonceFn;

    #[cfg_attr(not(rust_secp_no_symbol_renaming), link_name = "rustsecp256k1_v0_4_1_context_no_precomp")]
    pub static secp256k1_context_no_precomp: *const Context;

    // Contexts
    #[cfg_attr(not(rust_secp_no_symbol_renaming), link_name = "rustsecp256k1_v0_4_1_context_preallocated_destroy")]
    pub fn secp256k1_context_preallocated_destroy(cx: *mut Context);

    // Signatures
    #[cfg_attr(not(rust_secp_no_symbol_renaming), link_name = "rustsecp256k1_v0_4_1_ecdsa_signature_parse_der")]
    pub fn secp256k1_ecdsa_signature_parse_der(cx: *const Context, sig: *mut Signature,
                                               input: *const c_uchar, in_len: size_t)
                                               -> c_int;

    #[cfg_attr(not(rust_secp_no_symbol_renaming), link_name = "rustsecp256k1_v0_4_1_ecdsa_signature_parse_compact")]
    pub fn secp256k1_ecdsa_signature_parse_compact(cx: *const Context, sig: *mut Signature,
                                                   input64: *const c_uchar)
                                                   -> c_int;

    #[cfg_attr(not(rust_secp_no_symbol_renaming), link_name = "rustsecp256k1_v0_4_1_ecdsa_signature_parse_der_lax")]
    pub fn ecdsa_signature_parse_der_lax(cx: *const Context, sig: *mut Signature,
                                         input: *const c_uchar, in_len: size_t)
                                         -> c_int;

    #[cfg_attr(not(rust_secp_no_symbol_renaming), link_name = "rustsecp256k1_v0_4_1_ecdsa_signature_serialize_der")]
    pub fn secp256k1_ecdsa_signature_serialize_der(cx: *const Context, output: *mut c_uchar,
                                                   out_len: *mut size_t, sig: *const Signature)
                                                   -> c_int;

    #[cfg_attr(not(rust_secp_no_symbol_renaming), link_name = "rustsecp256k1_v0_4_1_ecdsa_signature_serialize_compact")]
    pub fn secp256k1_ecdsa_signature_serialize_compact(cx: *const Context, output64: *mut c_uchar,
                                                       sig: *const Signature)
                                                       -> c_int;

    #[cfg_attr(not(rust_secp_no_symbol_renaming), link_name = "rustsecp256k1_v0_4_1_ecdsa_signature_normalize")]
    pub fn secp256k1_ecdsa_signature_normalize(cx: *const Context, out_sig: *mut Signature,
                                               in_sig: *const Signature)
                                               -> c_int;

    // Secret Keys
    #[cfg_attr(not(rust_secp_no_symbol_renaming), link_name = "rustsecp256k1_v0_4_1_ec_seckey_verify")]
    pub fn secp256k1_ec_seckey_verify(cx: *const Context,
                                      sk: *const c_uchar) -> c_int;

    #[deprecated(since = "0.2.0",note = "Please use the secp256k1_ec_seckey_tweak_add function instead")]
    #[cfg_attr(not(rust_secp_no_symbol_renaming), link_name = "rustsecp256k1_v0_4_1_ec_privkey_negate")]
    pub fn secp256k1_ec_privkey_negate(cx: *const Context,
                                       sk: *mut c_uchar) -> c_int;

    #[cfg_attr(not(rust_secp_no_symbol_renaming), link_name = "rustsecp256k1_v0_4_1_ec_seckey_negate")]
    pub fn secp256k1_ec_seckey_negate(cx: *const Context,
                                      sk: *mut c_uchar) -> c_int;

    #[deprecated(since = "0.2.0",note = "Please use the secp256k1_ec_seckey_tweak_add function instead")]
    #[cfg_attr(not(rust_secp_no_symbol_renaming), link_name = "rustsecp256k1_v0_4_1_ec_privkey_tweak_add")]
    pub fn secp256k1_ec_privkey_tweak_add(cx: *const Context,
                                          sk: *mut c_uchar,
                                          tweak: *const c_uchar)
                                          -> c_int;

    #[cfg_attr(not(rust_secp_no_symbol_renaming), link_name = "rustsecp256k1_v0_4_1_ec_seckey_tweak_add")]
    pub fn secp256k1_ec_seckey_tweak_add(cx: *const Context,
                                        sk: *mut c_uchar,
                                        tweak: *const c_uchar)
                                        -> c_int;

    #[deprecated(since = "0.2.0",note = "Please use the secp256k1_ec_seckey_tweak_mul function instead")]
    #[cfg_attr(not(rust_secp_no_symbol_renaming), link_name = "rustsecp256k1_v0_4_1_ec_privkey_tweak_mul")]
    pub fn secp256k1_ec_privkey_tweak_mul(cx: *const Context,
                                          sk: *mut c_uchar,
                                          tweak: *const c_uchar)
                                          -> c_int;

    #[cfg_attr(not(rust_secp_no_symbol_renaming), link_name = "rustsecp256k1_v0_4_1_ec_seckey_tweak_mul")]
    pub fn secp256k1_ec_seckey_tweak_mul(cx: *const Context,
                                        sk: *mut c_uchar,
                                        tweak: *const c_uchar)
                                        -> c_int;

    #[cfg_attr(not(rust_secp_no_symbol_renaming), link_name = "rustsecp256k1_v0_4_1_keypair_sec")]
    pub fn secp256k1_keypair_sec(cx: *const Context,
                                 output_seckey: *mut c_uchar,
                                 keypair: *const KeyPair)
                                 -> c_int;

    #[cfg_attr(not(rust_secp_no_symbol_renaming), link_name = "rustsecp256k1_v0_4_1_keypair_pub")]
    pub fn secp256k1_keypair_pub(cx: *const Context,
                                 output_pubkey: *mut PublicKey,
                                 keypair: *const KeyPair)
                                 -> c_int;
}

#[cfg(not(fuzzing))]
extern "C" {
    // Contexts
    #[cfg_attr(not(rust_secp_no_symbol_renaming), link_name = "rustsecp256k1_v0_4_1_context_preallocated_size")]
    pub fn secp256k1_context_preallocated_size(flags: c_uint) -> size_t;

    #[cfg_attr(not(rust_secp_no_symbol_renaming), link_name = "rustsecp256k1_v0_4_1_context_preallocated_create")]
    pub fn secp256k1_context_preallocated_create(prealloc: *mut c_void, flags: c_uint) -> *mut Context;

    #[cfg_attr(not(rust_secp_no_symbol_renaming), link_name = "rustsecp256k1_v0_4_1_context_preallocated_clone_size")]
    pub fn secp256k1_context_preallocated_clone_size(cx: *const Context) -> size_t;

    #[cfg_attr(not(rust_secp_no_symbol_renaming), link_name = "rustsecp256k1_v0_4_1_context_preallocated_clone")]
    pub fn secp256k1_context_preallocated_clone(cx: *const Context, prealloc: *mut c_void) -> *mut Context;

    #[cfg_attr(not(rust_secp_no_symbol_renaming), link_name = "rustsecp256k1_v0_4_1_context_randomize")]
    pub fn secp256k1_context_randomize(cx: *mut Context,
                                       seed32: *const c_uchar)
                                       -> c_int;
    // Pubkeys
    #[cfg_attr(not(rust_secp_no_symbol_renaming), link_name = "rustsecp256k1_v0_4_1_ec_pubkey_parse")]
    pub fn secp256k1_ec_pubkey_parse(cx: *const Context, pk: *mut PublicKey,
                                     input: *const c_uchar, in_len: size_t)
                                     -> c_int;

    #[cfg_attr(not(rust_secp_no_symbol_renaming), link_name = "rustsecp256k1_v0_4_1_ec_pubkey_serialize")]
    pub fn secp256k1_ec_pubkey_serialize(cx: *const Context, output: *mut c_uchar,
                                         out_len: *mut size_t, pk: *const PublicKey,
                                         compressed: c_uint)
                                         -> c_int;

    // EC
    #[cfg_attr(not(rust_secp_no_symbol_renaming), link_name = "rustsecp256k1_v0_4_1_ec_pubkey_create")]
    pub fn secp256k1_ec_pubkey_create(cx: *const Context, pk: *mut PublicKey,
                                      sk: *const c_uchar) -> c_int;


    #[cfg_attr(not(rust_secp_no_symbol_renaming), link_name = "rustsecp256k1_v0_4_1_ec_pubkey_negate")]
    pub fn secp256k1_ec_pubkey_negate(cx: *const Context,
                                      pk: *mut PublicKey) -> c_int;


    #[cfg_attr(not(rust_secp_no_symbol_renaming), link_name = "rustsecp256k1_v0_4_1_ec_pubkey_tweak_add")]
    pub fn secp256k1_ec_pubkey_tweak_add(cx: *const Context,
                                         pk: *mut PublicKey,
                                         tweak: *const c_uchar)
                                         -> c_int;

    #[cfg_attr(not(rust_secp_no_symbol_renaming), link_name = "rustsecp256k1_v0_4_1_ec_pubkey_tweak_mul")]
    pub fn secp256k1_ec_pubkey_tweak_mul(cx: *const Context,
                                         pk: *mut PublicKey,
                                         tweak: *const c_uchar)
                                         -> c_int;

    #[cfg_attr(not(rust_secp_no_symbol_renaming), link_name = "rustsecp256k1_v0_4_1_ec_pubkey_combine")]
    pub fn secp256k1_ec_pubkey_combine(cx: *const Context,
                                       out: *mut PublicKey,
                                       ins: *const *const PublicKey,
                                       n: c_int)
                                       -> c_int;

    #[cfg_attr(not(rust_secp_no_symbol_renaming), link_name = "rustsecp256k1_v0_4_1_ecdh")]
    pub fn secp256k1_ecdh(
        cx: *const Context,
        output: *mut c_uchar,
        pubkey: *const PublicKey,
        seckey: *const c_uchar,
        hashfp: EcdhHashFn,
        data: *mut c_void,
    ) -> c_int;

    // ECDSA
    #[cfg_attr(not(rust_secp_no_symbol_renaming), link_name = "rustsecp256k1_v0_4_1_ecdsa_verify")]
    pub fn secp256k1_ecdsa_verify(cx: *const Context,
                                  sig: *const Signature,
                                  msg32: *const c_uchar,
                                  pk: *const PublicKey)
                                  -> c_int;

    #[cfg_attr(not(rust_secp_no_symbol_renaming), link_name = "rustsecp256k1_v0_4_1_ecdsa_sign")]
    pub fn secp256k1_ecdsa_sign(cx: *const Context,
                                sig: *mut Signature,
                                msg32: *const c_uchar,
                                sk: *const c_uchar,
                                noncefn: NonceFn,
                                noncedata: *const c_void)
                                -> c_int;

    // Schnorr Signatures
    #[cfg_attr(not(rust_secp_no_symbol_renaming), link_name = "rustsecp256k1_v0_4_1_schnorrsig_sign")]
    pub fn secp256k1_schnorrsig_sign(
        cx: *const Context,
        sig: *mut c_uchar,
        msg32: *const c_uchar,
        keypair: *const KeyPair,
        noncefp: SchnorrNonceFn,
        noncedata: *const c_void
    ) -> c_int;

    #[cfg_attr(not(rust_secp_no_symbol_renaming), link_name = "rustsecp256k1_v0_4_1_schnorrsig_verify")]
    pub fn secp256k1_schnorrsig_verify(
        cx: *const Context,
        sig64: *const c_uchar,
        msg32: *const c_uchar,
        pubkey: *const XOnlyPublicKey,
    ) -> c_int;

    // Extra keys
    #[cfg_attr(not(rust_secp_no_symbol_renaming), link_name = "rustsecp256k1_v0_4_1_keypair_create")]
    pub fn secp256k1_keypair_create(
        cx: *const Context,
        keypair: *mut KeyPair,
        seckey: *const c_uchar,
    ) -> c_int;

    #[cfg_attr(not(rust_secp_no_symbol_renaming), link_name = "rustsecp256k1_v0_4_1_xonly_pubkey_parse")]
    pub fn secp256k1_xonly_pubkey_parse(
        cx: *const Context,
        pubkey: *mut XOnlyPublicKey,
        input32: *const c_uchar,
    ) -> c_int;

    #[cfg_attr(not(rust_secp_no_symbol_renaming), link_name = "rustsecp256k1_v0_4_1_xonly_pubkey_serialize")]
    pub fn secp256k1_xonly_pubkey_serialize(
        cx: *const Context,
        output32: *mut c_uchar,
        pubkey: *const XOnlyPublicKey,
    ) -> c_int;

    #[cfg_attr(not(rust_secp_no_symbol_renaming), link_name = "rustsecp256k1_v0_4_1_xonly_pubkey_from_pubkey")]
    pub fn secp256k1_xonly_pubkey_from_pubkey(
        cx: *const Context,
        xonly_pubkey: *mut XOnlyPublicKey,
        pk_parity: *mut c_int,
        pubkey: *const PublicKey,
    ) -> c_int;

    #[cfg_attr(not(rust_secp_no_symbol_renaming), link_name = "rustsecp256k1_v0_4_1_xonly_pubkey_tweak_add")]
    pub fn secp256k1_xonly_pubkey_tweak_add(
        cx: *const Context,
        output_pubkey: *mut PublicKey,
        internal_pubkey: *const XOnlyPublicKey,
        tweak32: *const c_uchar,
    ) -> c_int;

    #[cfg_attr(not(rust_secp_no_symbol_renaming), link_name = "rustsecp256k1_v0_4_1_keypair_xonly_pub")]
    pub fn secp256k1_keypair_xonly_pub(
        cx: *const Context,
        pubkey: *mut XOnlyPublicKey,
        pk_parity: *mut c_int,
        keypair: *const KeyPair
    ) -> c_int;

    #[cfg_attr(not(rust_secp_no_symbol_renaming), link_name = "rustsecp256k1_v0_4_1_keypair_xonly_tweak_add")]
    pub fn secp256k1_keypair_xonly_tweak_add(
        cx: *const Context,
        keypair: *mut KeyPair,
        tweak32: *const c_uchar,
    ) -> c_int;

    #[cfg_attr(not(rust_secp_no_symbol_renaming), link_name = "rustsecp256k1_v0_4_1_xonly_pubkey_tweak_add_check")]
    pub fn secp256k1_xonly_pubkey_tweak_add_check(
        cx: *const Context,
        tweaked_pubkey32: *const c_uchar,
        tweaked_pubkey_parity: c_int,
        internal_pubkey: *const XOnlyPublicKey,
        tweak32: *const c_uchar,
    ) -> c_int;
}

/// A reimplementation of the C function `secp256k1_context_create` in rust.
///
/// This function allocates memory, the pointer should be deallocated using `secp256k1_context_destroy`
/// A failure to do so will result in a memory leak.
///
/// This will create a secp256k1 raw context.
// Returns: a newly created context object.
//  In:      flags: which parts of the context to initialize.
#[no_mangle]
#[cfg(all(feature = "std", not(rust_secp_no_symbol_renaming)))]
pub unsafe extern "C" fn rustsecp256k1_v0_4_1_context_create(flags: c_uint) -> *mut Context {
    use core::mem;
    use std::alloc;
    assert!(ALIGN_TO >= mem::align_of::<usize>());
    assert!(ALIGN_TO >= mem::align_of::<&usize>());
    assert!(ALIGN_TO >= mem::size_of::<usize>());

    // We need to allocate `ALIGN_TO` more bytes in order to write the amount of bytes back.
    let bytes = secp256k1_context_preallocated_size(flags) + ALIGN_TO;
    let layout = alloc::Layout::from_size_align(bytes, ALIGN_TO).unwrap();
    let ptr = alloc::alloc(layout);
    (ptr as *mut usize).write(bytes);
    // We must offset a whole ALIGN_TO in order to preserve the same alignment
    // this means we "lose" ALIGN_TO-size_of(usize) for padding.
    let ptr = ptr.add(ALIGN_TO) as *mut c_void;
    secp256k1_context_preallocated_create(ptr, flags)
}

#[cfg(all(feature = "std", not(rust_secp_no_symbol_renaming)))]
pub unsafe fn secp256k1_context_create(flags: c_uint) -> *mut Context {
    rustsecp256k1_v0_4_1_context_create(flags)
}

/// A reimplementation of the C function `secp256k1_context_destroy` in rust.
///
/// This function destroys and deallcates the context created by `secp256k1_context_create`.
///
/// The pointer shouldn't be used after passing to this function, consider it as passing it to `free()`.
///
#[no_mangle]
#[cfg(all(feature = "std", not(rust_secp_no_symbol_renaming)))]
pub unsafe extern "C" fn rustsecp256k1_v0_4_1_context_destroy(ctx: *mut Context) {
    use std::alloc;
    secp256k1_context_preallocated_destroy(ctx);
    let ptr = (ctx as *mut u8).sub(ALIGN_TO);
    let bytes = (ptr as *mut usize).read();
    let layout = alloc::Layout::from_size_align(bytes, ALIGN_TO).unwrap();
    alloc::dealloc(ptr, layout);
}

#[cfg(all(feature = "std", not(rust_secp_no_symbol_renaming)))]
pub unsafe fn secp256k1_context_destroy(ctx: *mut Context) {
    rustsecp256k1_v0_4_1_context_destroy(ctx)
}


/// **This function is an override for the C function, this is the an edited version of the original description:**
///
/// A callback function to be called when an illegal argument is passed to
/// an API call. It will only trigger for violations that are mentioned
/// explicitly in the header. **This will cause a panic**.
///
/// The philosophy is that these shouldn't be dealt with through a
/// specific return value, as calling code should not have branches to deal with
/// the case that this code itself is broken.
///
/// On the other hand, during debug stage, one would want to be informed about
/// such mistakes, and the default (crashing) may be inadvisable.
/// When this callback is triggered, the API function called is guaranteed not
/// to cause a crash, though its return value and output arguments are
/// undefined.
///
/// See also secp256k1_default_error_callback_fn.
///
#[no_mangle]
#[cfg(not(rust_secp_no_symbol_renaming))]
pub unsafe extern "C" fn rustsecp256k1_v0_4_1_default_illegal_callback_fn(message: *const c_char, _data: *mut c_void) {
    use core::str;
    let msg_slice = slice::from_raw_parts(message as *const u8, strlen(message));
    let msg = str::from_utf8_unchecked(msg_slice);
    panic!("[libsecp256k1] illegal argument. {}", msg);
}

/// **This function is an override for the C function, this is the an edited version of the original description:**
///
/// A callback function to be called when an internal consistency check
/// fails. **This will cause a panic**.
///
/// This can only trigger in case of a hardware failure, miscompilation,
/// memory corruption, serious bug in the library, or other error would can
/// otherwise result in undefined behaviour. It will not trigger due to mere
/// incorrect usage of the API (see secp256k1_default_illegal_callback_fn
/// for that). After this callback returns, anything may happen, including
/// crashing.
///
/// See also secp256k1_default_illegal_callback_fn.
///
#[no_mangle]
#[cfg(not(rust_secp_no_symbol_renaming))]
pub unsafe extern "C" fn rustsecp256k1_v0_4_1_default_error_callback_fn(message: *const c_char, _data: *mut c_void) {
    use core::str;
    let msg_slice = slice::from_raw_parts(message as *const u8, strlen(message));
    let msg = str::from_utf8_unchecked(msg_slice);
    panic!("[libsecp256k1] internal consistency check failed {}", msg);
}

#[cfg(not(rust_secp_no_symbol_renaming))]
unsafe fn strlen(mut str_ptr: *const c_char) -> usize {
    let mut ctr = 0;
    while *str_ptr != '\0' as c_char {
        ctr += 1;
        str_ptr = str_ptr.offset(1);
    }
    ctr
}


/// A trait for producing pointers that will always be valid in C. (assuming NULL pointer is a valid no-op)
/// Rust doesn't promise what pointers does it give to ZST (https://doc.rust-lang.org/nomicon/exotic-sizes.html#zero-sized-types-zsts)
/// In case the type is empty this trait will give a NULL pointer, which should be handled in C.
///
pub trait CPtr {
    type Target;
    fn as_c_ptr(&self) -> *const Self::Target;
    fn as_mut_c_ptr(&mut self) -> *mut Self::Target;
}

impl<T> CPtr for [T] {
    type Target = T;
    fn as_c_ptr(&self) -> *const Self::Target {
        if self.is_empty() {
            ptr::null()
        } else {
            self.as_ptr()
        }
    }

    fn as_mut_c_ptr(&mut self) -> *mut Self::Target {
        if self.is_empty() {
            ptr::null_mut::<Self::Target>()
        } else {
            self.as_mut_ptr()
        }
    }
}

#[cfg(fuzzing)]
mod fuzz_dummy {
    use super::*;
    use core::sync::atomic::{AtomicUsize, Ordering};

    #[cfg(rust_secp_no_symbol_renaming)] compile_error!("We do not support fuzzing with rust_secp_no_symbol_renaming");

    extern "C" {
        fn rustsecp256k1_v0_4_1_context_preallocated_size(flags: c_uint) -> size_t;
        fn rustsecp256k1_v0_4_1_context_preallocated_create(prealloc: *mut c_void, flags: c_uint) -> *mut Context;
        fn rustsecp256k1_v0_4_1_context_preallocated_clone(cx: *const Context, prealloc: *mut c_void) -> *mut Context;
    }

    #[cfg(feature = "lowmemory")]
    const CTX_SIZE: usize = 1024 * 65;
    #[cfg(not(feature = "lowmemory"))]
    const CTX_SIZE: usize = 1024 * (1024 + 128);
    // Contexts
    pub unsafe fn secp256k1_context_preallocated_size(flags: c_uint) -> size_t {
        assert!(rustsecp256k1_v0_4_1_context_preallocated_size(flags) + std::mem::size_of::<c_uint>() <= CTX_SIZE);
        CTX_SIZE
    }

    static HAVE_PREALLOCATED_CONTEXT: AtomicUsize = AtomicUsize::new(0);
    const HAVE_CONTEXT_NONE: usize = 0;
    const HAVE_CONTEXT_WORKING: usize = 1;
    const HAVE_CONTEXT_DONE: usize = 2;
    static mut PREALLOCATED_CONTEXT: [u8; CTX_SIZE] = [0; CTX_SIZE];
    pub unsafe fn secp256k1_context_preallocated_create(prealloc: *mut c_void, flags: c_uint) -> *mut Context {
        // While applications should generally avoid creating too many contexts, sometimes fuzzers
        // perform tasks repeatedly which real applications may only do rarely. Thus, we want to
        // avoid being overly slow here. We do so by having a static context and copying it into
        // new buffers instead of recalculating it. Because we shouldn't rely on std, we use a
        // simple hand-written OnceFlag built out of an atomic to gate the global static.
        let mut have_ctx = HAVE_PREALLOCATED_CONTEXT.load(Ordering::Relaxed);
        while have_ctx != HAVE_CONTEXT_DONE {
            if have_ctx == HAVE_CONTEXT_NONE {
                have_ctx = HAVE_PREALLOCATED_CONTEXT.swap(HAVE_CONTEXT_WORKING, Ordering::AcqRel);
                if have_ctx == HAVE_CONTEXT_NONE {
                    assert!(rustsecp256k1_v0_4_1_context_preallocated_size(SECP256K1_START_SIGN | SECP256K1_START_VERIFY) + std::mem::size_of::<c_uint>() <= CTX_SIZE);
                    assert_eq!(rustsecp256k1_v0_4_1_context_preallocated_create(
                            PREALLOCATED_CONTEXT[..].as_ptr() as *mut c_void,
                            SECP256K1_START_SIGN | SECP256K1_START_VERIFY),
                        PREALLOCATED_CONTEXT[..].as_ptr() as *mut Context);
                    assert_eq!(HAVE_PREALLOCATED_CONTEXT.swap(HAVE_CONTEXT_DONE, Ordering::AcqRel),
                        HAVE_CONTEXT_WORKING);
                } else if have_ctx == HAVE_CONTEXT_DONE {
                    // Another thread finished while we were swapping.
                    HAVE_PREALLOCATED_CONTEXT.store(HAVE_CONTEXT_DONE, Ordering::Release);
                }
            } else {
                // Another thread is building, just busy-loop until they're done.
                assert_eq!(have_ctx, HAVE_CONTEXT_WORKING);
                have_ctx = HAVE_PREALLOCATED_CONTEXT.load(Ordering::Acquire);
                #[cfg(feature = "std")]
                std::thread::yield_now();
            }
        }
        ptr::copy_nonoverlapping(PREALLOCATED_CONTEXT[..].as_ptr(), prealloc as *mut u8, CTX_SIZE);
        let ptr = (prealloc as *mut u8).add(CTX_SIZE).sub(std::mem::size_of::<c_uint>());
        (ptr as *mut c_uint).write(flags);
        prealloc as *mut Context
    }
    pub unsafe fn secp256k1_context_preallocated_clone_size(_cx: *const Context) -> size_t { CTX_SIZE }
    pub unsafe fn secp256k1_context_preallocated_clone(cx: *const Context, prealloc: *mut c_void) -> *mut Context {
        let orig_ptr = (cx as *mut u8).add(CTX_SIZE).sub(std::mem::size_of::<c_uint>());
        let new_ptr = (prealloc as *mut u8).add(CTX_SIZE).sub(std::mem::size_of::<c_uint>());
        let flags = (orig_ptr as *mut c_uint).read();
        (new_ptr as *mut c_uint).write(flags);
        rustsecp256k1_v0_4_1_context_preallocated_clone(cx, prealloc)
    }

    pub unsafe fn secp256k1_context_randomize(cx: *mut Context,
                                              _seed32: *const c_uchar)
                                              -> c_int {
        // This function is really slow, and unsuitable for fuzzing
        check_context_flags(cx, 0);
        1
    }

    unsafe fn check_context_flags(cx: *const Context, required_flags: c_uint) {
        assert!(!cx.is_null());
        let cx_flags = if cx == secp256k1_context_no_precomp {
            1
        } else {
            let ptr = (cx as *const u8).add(CTX_SIZE).sub(std::mem::size_of::<c_uint>());
            (ptr as *const c_uint).read()
        };
        assert_eq!(cx_flags & 1, 1); // SECP256K1_FLAGS_TYPE_CONTEXT
        assert_eq!(cx_flags & required_flags, required_flags);
    }

    /// Checks that pk != 0xffff...ffff and pk[1..32] == pk[33..64]
    unsafe fn test_pk_validate(cx: *const Context,
                               pk: *const PublicKey) -> c_int {
        check_context_flags(cx, 0);
        if (*pk).0[1..32] != (*pk).0[33..64] ||
           ((*pk).0[32] != 0 && (*pk).0[32] != 0xff) ||
           secp256k1_ec_seckey_verify(cx, (*pk).0[0..32].as_ptr()) == 0 {
            0
        } else {
            1
        }
    }
    unsafe fn test_cleanup_pk(pk: *mut PublicKey) {
        (*pk).0[32..].copy_from_slice(&(*pk).0[..32]);
        if (*pk).0[32] <= 0x7f {
            (*pk).0[32] = 0;
        } else {
            (*pk).0[32] = 0xff;
        }
    }

    // Pubkeys
    pub unsafe fn secp256k1_ec_pubkey_parse(cx: *const Context, pk: *mut PublicKey,
                                            input: *const c_uchar, in_len: size_t)
                                            -> c_int {
        check_context_flags(cx, 0);
        match in_len {
            33 => {
                if *input != 2 && *input != 3 {
                    0
                } else {
                    ptr::copy(input.offset(1), (*pk).0[0..32].as_mut_ptr(), 32);
                    ptr::copy(input.offset(2), (*pk).0[33..64].as_mut_ptr(), 31);
                    if *input == 3 {
                        (*pk).0[32] = 0xff;
                    } else {
                        (*pk).0[32] = 0;
                    }
                    test_pk_validate(cx, pk)
                }
            },
            65 => {
                if *input != 4 && *input != 6 && *input != 7 {
                    0
                } else {
                    ptr::copy(input.offset(1), (*pk).0.as_mut_ptr(), 64);
                    test_cleanup_pk(pk);
                    test_pk_validate(cx, pk)
                }
            },
            _ => 0
        }
    }

    /// Serialize PublicKey back to 33/65 byte pubkey
    pub unsafe fn secp256k1_ec_pubkey_serialize(cx: *const Context, output: *mut c_uchar,
                                                out_len: *mut size_t, pk: *const PublicKey,
                                                compressed: c_uint)
                                                -> c_int {
        check_context_flags(cx, 0);
        assert_eq!(test_pk_validate(cx, pk), 1);
        if compressed == SECP256K1_SER_COMPRESSED {
            assert_eq!(*out_len, 33);
            if (*pk).0[32] <= 0x7f {
                *output = 2;
            } else {
                *output = 3;
            }
            ptr::copy((*pk).0.as_ptr(), output.offset(1), 32);
        } else if compressed == SECP256K1_SER_UNCOMPRESSED {
            assert_eq!(*out_len, 65);
            *output = 4;
            ptr::copy((*pk).0.as_ptr(), output.offset(1), 64);
        } else {
            panic!("Bad flags");
        }
        1
     }

    // EC
    /// Sets pk to sk||sk
    pub unsafe fn secp256k1_ec_pubkey_create(cx: *const Context, pk: *mut PublicKey,
                                             sk: *const c_uchar) -> c_int {
        check_context_flags(cx, SECP256K1_START_SIGN);
        if secp256k1_ec_seckey_verify(cx, sk) != 1 { return 0; }
        ptr::copy(sk, (*pk).0[0..32].as_mut_ptr(), 32);
        test_cleanup_pk(pk);
        assert_eq!(test_pk_validate(cx, pk), 1);
        1
    }

    pub unsafe fn secp256k1_ec_pubkey_negate(cx: *const Context,
                                             pk: *mut PublicKey) -> c_int {
        check_context_flags(cx, 0);
        assert_eq!(test_pk_validate(cx, pk), 1);
        if secp256k1_ec_seckey_negate(cx, (*pk).0[..32].as_mut_ptr()) != 1 { return 0; }
        test_cleanup_pk(pk);
        assert_eq!(test_pk_validate(cx, pk), 1);
        1
    }

    /// The PublicKey equivalent of secp256k1_ec_privkey_tweak_add
    pub unsafe fn secp256k1_ec_pubkey_tweak_add(cx: *const Context,
                                                pk: *mut PublicKey,
                                                tweak: *const c_uchar)
                                                -> c_int {
        check_context_flags(cx, SECP256K1_START_VERIFY);
        assert_eq!(test_pk_validate(cx, pk), 1);
        if secp256k1_ec_seckey_tweak_add(cx, (*pk).0[..32].as_mut_ptr(), tweak) != 1 { return 0; }
        test_cleanup_pk(pk);
        assert_eq!(test_pk_validate(cx, pk), 1);
        1
    }

    /// The PublicKey equivalent of secp256k1_ec_privkey_tweak_mul
    pub unsafe fn secp256k1_ec_pubkey_tweak_mul(cx: *const Context,
                                                pk: *mut PublicKey,
                                                tweak: *const c_uchar)
                                                -> c_int {
        check_context_flags(cx, 0);
        assert_eq!(test_pk_validate(cx, pk), 1);
        if secp256k1_ec_seckey_tweak_mul(cx, (*pk).0[..32].as_mut_ptr(), tweak) != 1 { return 0; }
        test_cleanup_pk(pk);
        assert_eq!(test_pk_validate(cx, pk), 1);
        1
    }

    pub unsafe fn secp256k1_ec_pubkey_combine(cx: *const Context,
                                              out: *mut PublicKey,
                                              ins: *const *const PublicKey,
                                              n: c_int)
                                              -> c_int {
        check_context_flags(cx, 0);
        assert!(n >= 1);
        (*out) = **ins;
        for i in 1..n {
            assert_eq!(test_pk_validate(cx, *ins.offset(i as isize)), 1);
            if secp256k1_ec_seckey_tweak_add(cx, (*out).0[..32].as_mut_ptr(), (**ins.offset(i as isize)).0[..32].as_ptr()) != 1 {
                return 0;
            }
        }
        test_cleanup_pk(out);
        assert_eq!(test_pk_validate(cx, out), 1);
        1
    }

    /// Sets out to point^scalar^1s
    pub unsafe fn secp256k1_ecdh(
        cx: *const Context,
        out: *mut c_uchar,
        point: *const PublicKey,
        scalar: *const c_uchar,
        hashfp: EcdhHashFn,
        data: *mut c_void,
    ) -> c_int {
        check_context_flags(cx, 0);
        assert_eq!(test_pk_validate(cx, point), 1);
        if secp256k1_ec_seckey_verify(cx, scalar) != 1 { return 0; }

        let scalar_slice = slice::from_raw_parts(scalar, 32);
        let pk_slice = &(*point).0[..32];

        let mut res_arr = [0; 32];
        for i in 0..32 {
            res_arr[i] = scalar_slice[i] ^ pk_slice[i] ^ 1;
        }

        if let Some(hashfn) = hashfp {
            (hashfn)(out, res_arr.as_ptr(), res_arr.as_ptr(), data);
        } else {
            res_arr[16] = 0x00; // result should always be a valid secret key
            let out_slice = slice::from_raw_parts_mut(out, 32);
            out_slice.copy_from_slice(&res_arr);
        }
        1
    }

    // ECDSA
    /// Verifies that sig is msg32||pk[..32]
    pub unsafe fn secp256k1_ecdsa_verify(cx: *const Context,
                                         sig: *const Signature,
                                         msg32: *const c_uchar,
                                         pk: *const PublicKey)
                                         -> c_int {
        check_context_flags(cx, SECP256K1_START_VERIFY);
        // Actually verify
        let sig_sl = slice::from_raw_parts(sig as *const u8, 64);
        let msg_sl = slice::from_raw_parts(msg32 as *const u8, 32);
        if &sig_sl[..32] == msg_sl && sig_sl[32..] == (*pk).0[0..32] {
            1
        } else {
            0
        }
    }

    /// Sets sig to msg32||pk[..32]
    pub unsafe fn secp256k1_ecdsa_sign(cx: *const Context,
                                       sig: *mut Signature,
                                       msg32: *const c_uchar,
                                       sk: *const c_uchar,
                                       _noncefn: NonceFn,
                                       _noncedata: *const c_void)
                                       -> c_int {
        check_context_flags(cx, SECP256K1_START_SIGN);
        // Check context is built for signing (and compute pk)
        let mut new_pk = PublicKey::new();
        if secp256k1_ec_pubkey_create(cx, &mut new_pk, sk) != 1 {
            return 0;
        }
        // Sign
        let sig_sl = slice::from_raw_parts_mut(sig as *mut u8, 64);
        let msg_sl = slice::from_raw_parts(msg32 as *const u8, 32);
        sig_sl[..32].copy_from_slice(msg_sl);
        sig_sl[32..].copy_from_slice(&new_pk.0[..32]);
        1
    }

    // Schnorr Signatures
    /// Verifies that sig is msg32||pk[32..]
    pub unsafe fn secp256k1_schnorrsig_verify(
        cx: *const Context,
        sig64: *const c_uchar,
        msg32: *const c_uchar,
        pubkey: *const XOnlyPublicKey,
    ) -> c_int {
        check_context_flags(cx, SECP256K1_START_VERIFY);
        // Check context is built for verification
        let mut new_pk = PublicKey::new();
        let _ = secp256k1_xonly_pubkey_tweak_add(cx, &mut new_pk, pubkey, msg32);
        // Actually verify
        let sig_sl = slice::from_raw_parts(sig64 as *const u8, 64);
        let msg_sl = slice::from_raw_parts(msg32 as *const u8, 32);
        if &sig_sl[..32] == msg_sl && sig_sl[32..] == (*pubkey).0[..32] {
            1
        } else {
            0
        }
    }

    /// Sets sig to msg32||pk[..32]
    pub unsafe fn secp256k1_schnorrsig_sign(
        cx: *const Context,
        sig64: *mut c_uchar,
        msg32: *const c_uchar,
        keypair: *const KeyPair,
        _noncefp: SchnorrNonceFn,
        _noncedata: *const c_void
    ) -> c_int {
        check_context_flags(cx, SECP256K1_START_SIGN);
        // Check context is built for signing
        let mut new_kp = KeyPair::new();
        if secp256k1_keypair_create(cx, &mut new_kp, (*keypair).0.as_ptr()) != 1 {
            return 0;
        }
        assert_eq!(new_kp, *keypair);
        // Sign
        let sig_sl = slice::from_raw_parts_mut(sig64 as *mut u8, 64);
        let msg_sl = slice::from_raw_parts(msg32 as *const u8, 32);
        sig_sl[..32].copy_from_slice(msg_sl);
        sig_sl[32..].copy_from_slice(&new_kp.0[32..64]);
        1
    }

    // Extra keys
    pub unsafe fn secp256k1_keypair_create(
        cx: *const Context,
        keypair: *mut KeyPair,
        seckey: *const c_uchar,
    ) -> c_int {
        check_context_flags(cx, SECP256K1_START_SIGN);
        if secp256k1_ec_seckey_verify(cx, seckey) == 0 { return 0; }

        let mut pk = PublicKey::new();
        if secp256k1_ec_pubkey_create(cx, &mut pk, seckey) == 0 { return 0; }

        let seckey_slice = slice::from_raw_parts(seckey, 32);
        (*keypair).0[..32].copy_from_slice(seckey_slice);
        (*keypair).0[32..].copy_from_slice(&pk.0);
        1
    }

    pub unsafe fn secp256k1_xonly_pubkey_parse(
        cx: *const Context,
        pubkey: *mut XOnlyPublicKey,
        input32: *const c_uchar,
    ) -> c_int {
        check_context_flags(cx, 0);
        let inslice = slice::from_raw_parts(input32, 32);
        (*pubkey).0[..32].copy_from_slice(inslice);
        (*pubkey).0[32..].copy_from_slice(inslice);
        test_cleanup_pk(pubkey as *mut PublicKey);
        test_pk_validate(cx, pubkey as *mut PublicKey)
    }

    pub unsafe fn secp256k1_xonly_pubkey_serialize(
        cx: *const Context,
        output32: *mut c_uchar,
        pubkey: *const XOnlyPublicKey,
    ) -> c_int {
        check_context_flags(cx, 0);
        let outslice = slice::from_raw_parts_mut(output32, 32);
        outslice.copy_from_slice(&(*pubkey).0[..32]);
        1
    }

    pub unsafe fn secp256k1_xonly_pubkey_from_pubkey(
        cx: *const Context,
        xonly_pubkey: *mut XOnlyPublicKey,
        pk_parity: *mut c_int,
        pubkey: *const PublicKey,
    ) -> c_int {
        check_context_flags(cx, 0);
        if !pk_parity.is_null() {
            *pk_parity = ((*pubkey).0[32] == 0).into();
        }
        (*xonly_pubkey).0.copy_from_slice(&(*pubkey).0);
        assert_eq!(test_pk_validate(cx, pubkey), 1);
        1
    }

    pub unsafe fn secp256k1_xonly_pubkey_tweak_add(
        cx: *const Context,
        output_pubkey: *mut PublicKey,
        internal_pubkey: *const XOnlyPublicKey,
        tweak32: *const c_uchar,
    ) -> c_int {
        check_context_flags(cx, SECP256K1_START_VERIFY);
        (*output_pubkey).0.copy_from_slice(&(*internal_pubkey).0);
        secp256k1_ec_pubkey_tweak_add(cx, output_pubkey, tweak32)
    }

    pub unsafe fn secp256k1_keypair_xonly_pub(
        cx: *const Context,
        pubkey: *mut XOnlyPublicKey,
        pk_parity: *mut c_int,
        keypair: *const KeyPair
    ) -> c_int {
        check_context_flags(cx, 0);
        if !pk_parity.is_null() {
            *pk_parity = ((*keypair).0[32] == 0).into();
        }
        (*pubkey).0.copy_from_slice(&(*keypair).0[32..]);
        1
    }

    pub unsafe fn secp256k1_keypair_xonly_tweak_add(
        cx: *const Context,
        keypair: *mut KeyPair,
        tweak32: *const c_uchar,
    ) -> c_int {
        check_context_flags(cx, SECP256K1_START_VERIFY);
        let mut pk = PublicKey::new();
        pk.0.copy_from_slice(&(*keypair).0[32..]);
        let mut sk = [0; 32];
        sk.copy_from_slice(&(*keypair).0[..32]);
        assert_eq!(secp256k1_ec_pubkey_tweak_add(cx, &mut pk, tweak32), 1);
        assert_eq!(secp256k1_ec_seckey_tweak_add(cx, (&mut sk[..]).as_mut_ptr(), tweak32), 1);
        (*keypair).0[..32].copy_from_slice(&sk);
        (*keypair).0[32..].copy_from_slice(&pk.0);
        1
    }

    pub unsafe fn secp256k1_xonly_pubkey_tweak_add_check(
        cx: *const Context,
        tweaked_pubkey32: *const c_uchar,
        tweaked_pubkey_parity: c_int,
        internal_pubkey: *const XOnlyPublicKey,
        tweak32: *const c_uchar,
    ) -> c_int {
        check_context_flags(cx, SECP256K1_START_VERIFY);
        let mut tweaked_pk = PublicKey::new();
        assert_eq!(secp256k1_xonly_pubkey_tweak_add(cx, &mut tweaked_pk, internal_pubkey, tweak32), 1);
        let in_slice = slice::from_raw_parts(tweaked_pubkey32, 32);
        if &tweaked_pk.0[..32] == in_slice && tweaked_pubkey_parity == (tweaked_pk.0[32] == 0).into() {
            1
        } else {
            0
        }
    }
}

#[cfg(fuzzing)]
pub use self::fuzz_dummy::*;

#[cfg(test)]
mod tests {
    #[cfg(not(rust_secp_no_symbol_renaming))]
    #[test]
    fn test_strlen() {
        use std::ffi::CString;
        use super::strlen;

        let orig = "test strlen \t \n";
        let test = CString::new(orig).unwrap();

        assert_eq!(orig.len(), unsafe {strlen(test.as_ptr())});
    }
}