1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
use std::fmt;
use std::{
    future::Future,
    pin::Pin,
    task::{Context, Poll},
};
use tower_service::Service;

/// Returns a new [`FutureService`] for the given future.
///
/// A [`FutureService`] allows you to treat a future that resolves to a service as a service. This
/// can be useful for services that are created asynchronously.
///
/// # Example
/// ```
/// use tower::{service_fn, Service, ServiceExt};
/// use tower::util::future_service;
/// use std::convert::Infallible;
///
/// # fn main() {
/// # async {
/// // A future which outputs a type implementing `Service`.
/// let future_of_a_service = async {
///     let svc = service_fn(|_req: ()| async { Ok::<_, Infallible>("ok") });
///     Ok::<_, Infallible>(svc)
/// };
///
/// // Wrap the future with a `FutureService`, allowing it to be used
/// // as a service without awaiting the future's completion:
/// let mut svc = future_service(Box::pin(future_of_a_service));
///
/// // Now, when we wait for the service to become ready, it will
/// // drive the future to completion internally.
/// let svc = svc.ready().await.unwrap();
/// let res = svc.call(()).await.unwrap();
/// # };
/// # }
/// ```
///
/// # Regarding the [`Unpin`] bound
///
/// The [`Unpin`] bound on `F` is necessary because the future will be polled in
/// [`Service::poll_ready`] which doesn't have a pinned receiver (it takes `&mut self` and not `self:
/// Pin<&mut Self>`). So we cannot put the future into a `Pin` without requiring `Unpin`.
///
/// This will most likely come up if you're calling `future_service` with an async block. In that
/// case you can use `Box::pin(async { ... })` as shown in the example.
pub fn future_service<F, S, R, E>(future: F) -> FutureService<F, S>
where
    F: Future<Output = Result<S, E>> + Unpin,
    S: Service<R, Error = E>,
{
    FutureService::new(future)
}

/// A type that implements [`Service`] for a [`Future`] that produces a [`Service`].
///
/// See [`future_service`] for more details.
#[derive(Clone)]
pub struct FutureService<F, S> {
    state: State<F, S>,
}

impl<F, S> FutureService<F, S> {
    /// Returns a new [`FutureService`] for the given future.
    ///
    /// A [`FutureService`] allows you to treat a future that resolves to a service as a service. This
    /// can be useful for services that are created asynchronously.
    ///
    /// # Example
    /// ```
    /// use tower::{service_fn, Service, ServiceExt};
    /// use tower::util::FutureService;
    /// use std::convert::Infallible;
    ///
    /// # fn main() {
    /// # async {
    /// // A future which outputs a type implementing `Service`.
    /// let future_of_a_service = async {
    ///     let svc = service_fn(|_req: ()| async { Ok::<_, Infallible>("ok") });
    ///     Ok::<_, Infallible>(svc)
    /// };
    ///
    /// // Wrap the future with a `FutureService`, allowing it to be used
    /// // as a service without awaiting the future's completion:
    /// let mut svc = FutureService::new(Box::pin(future_of_a_service));
    ///
    /// // Now, when we wait for the service to become ready, it will
    /// // drive the future to completion internally.
    /// let svc = svc.ready().await.unwrap();
    /// let res = svc.call(()).await.unwrap();
    /// # };
    /// # }
    /// ```
    ///
    /// # Regarding the [`Unpin`] bound
    ///
    /// The [`Unpin`] bound on `F` is necessary because the future will be polled in
    /// [`Service::poll_ready`] which doesn't have a pinned receiver (it takes `&mut self` and not `self:
    /// Pin<&mut Self>`). So we cannot put the future into a `Pin` without requiring `Unpin`.
    ///
    /// This will most likely come up if you're calling `future_service` with an async block. In that
    /// case you can use `Box::pin(async { ... })` as shown in the example.
    pub fn new(future: F) -> Self {
        Self {
            state: State::Future(future),
        }
    }
}

impl<F, S> fmt::Debug for FutureService<F, S>
where
    S: fmt::Debug,
{
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.debug_struct("FutureService")
            .field("state", &format_args!("{:?}", self.state))
            .finish()
    }
}

#[derive(Clone)]
enum State<F, S> {
    Future(F),
    Service(S),
}

impl<F, S> fmt::Debug for State<F, S>
where
    S: fmt::Debug,
{
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        match self {
            State::Future(_) => f
                .debug_tuple("State::Future")
                .field(&format_args!("<{}>", std::any::type_name::<F>()))
                .finish(),
            State::Service(svc) => f.debug_tuple("State::Service").field(svc).finish(),
        }
    }
}

impl<F, S, R, E> Service<R> for FutureService<F, S>
where
    F: Future<Output = Result<S, E>> + Unpin,
    S: Service<R, Error = E>,
{
    type Response = S::Response;
    type Error = E;
    type Future = S::Future;

    fn poll_ready(&mut self, cx: &mut Context<'_>) -> Poll<Result<(), Self::Error>> {
        loop {
            self.state = match &mut self.state {
                State::Future(fut) => {
                    let fut = Pin::new(fut);
                    let svc = futures_core::ready!(fut.poll(cx)?);
                    State::Service(svc)
                }
                State::Service(svc) => return svc.poll_ready(cx),
            };
        }
    }

    fn call(&mut self, req: R) -> Self::Future {
        if let State::Service(svc) = &mut self.state {
            svc.call(req)
        } else {
            panic!("FutureService::call was called before FutureService::poll_ready")
        }
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use crate::util::{future_service, ServiceExt};
    use crate::Service;
    use futures::future::{ready, Ready};
    use std::convert::Infallible;

    #[tokio::test]
    async fn pending_service_debug_impl() {
        let mut pending_svc = future_service(ready(Ok(DebugService)));

        assert_eq!(
            format!("{:?}", pending_svc),
            "FutureService { state: State::Future(<futures_util::future::ready::Ready<core::result::Result<tower::util::future_service::tests::DebugService, core::convert::Infallible>>>) }"
        );

        pending_svc.ready().await.unwrap();

        assert_eq!(
            format!("{:?}", pending_svc),
            "FutureService { state: State::Service(DebugService) }"
        );
    }

    #[derive(Debug)]
    struct DebugService;

    impl Service<()> for DebugService {
        type Response = ();
        type Error = Infallible;
        type Future = Ready<Result<Self::Response, Self::Error>>;

        fn poll_ready(&mut self, _cx: &mut Context<'_>) -> Poll<Result<(), Self::Error>> {
            Ok(()).into()
        }

        fn call(&mut self, _req: ()) -> Self::Future {
            ready(Ok(()))
        }
    }
}