1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427
//! A procedural macro attribute for instrumenting functions with [`tracing`].
//!
//! [`tracing`] is a framework for instrumenting Rust programs to collect
//! structured, event-based diagnostic information. This crate provides the
//! [`#[instrument]`][instrument] procedural macro attribute.
//!
//! Note that this macro is also re-exported by the main `tracing` crate.
//!
//! *Compiler support: [requires `rustc` 1.42+][msrv]*
//!
//! [msrv]: #supported-rust-versions
//!
//! ## Usage
//!
//! First, add this to your `Cargo.toml`:
//!
//! ```toml
//! [dependencies]
//! tracing-attributes = "0.1.18"
//! ```
//!
//! The [`#[instrument]`][instrument] attribute can now be added to a function
//! to automatically create and enter `tracing` [span] when that function is
//! called. For example:
//!
//! ```
//! use tracing_attributes::instrument;
//!
//! #[instrument]
//! pub fn my_function(my_arg: usize) {
//! // ...
//! }
//!
//! # fn main() {}
//! ```
//!
//! [`tracing`]: https://crates.io/crates/tracing
//! [span]: https://docs.rs/tracing/latest/tracing/span/index.html
//! [instrument]: attr.instrument.html
//!
//! ## Supported Rust Versions
//!
//! Tracing is built against the latest stable release. The minimum supported
//! version is 1.42. The current Tracing version is not guaranteed to build on
//! Rust versions earlier than the minimum supported version.
//!
//! Tracing follows the same compiler support policies as the rest of the Tokio
//! project. The current stable Rust compiler and the three most recent minor
//! versions before it will always be supported. For example, if the current
//! stable compiler version is 1.45, the minimum supported version will not be
//! increased past 1.42, three minor versions prior. Increasing the minimum
//! supported compiler version is not considered a semver breaking change as
//! long as doing so complies with this policy.
//!
#![doc(html_root_url = "https://docs.rs/tracing-attributes/0.1.18")]
#![doc(
html_logo_url = "https://raw.githubusercontent.com/tokio-rs/tracing/master/assets/logo-type.png",
issue_tracker_base_url = "https://github.com/tokio-rs/tracing/issues/"
)]
#![cfg_attr(docsrs, deny(rustdoc::broken_intra_doc_links))]
#![warn(
missing_debug_implementations,
missing_docs,
rust_2018_idioms,
unreachable_pub,
bad_style,
const_err,
dead_code,
improper_ctypes,
non_shorthand_field_patterns,
no_mangle_generic_items,
overflowing_literals,
path_statements,
patterns_in_fns_without_body,
private_in_public,
unconditional_recursion,
unused_allocation,
unused_comparisons,
unused_parens,
while_true
)]
// TODO: once `tracing` bumps its MSRV to 1.42, remove this allow.
#![allow(unused)]
extern crate proc_macro;
use std::collections::{HashMap, HashSet};
use std::iter;
use proc_macro2::TokenStream;
use quote::{quote, quote_spanned, ToTokens, TokenStreamExt as _};
use syn::ext::IdentExt as _;
use syn::parse::{Parse, ParseStream};
use syn::{
punctuated::Punctuated, spanned::Spanned, Block, Expr, ExprAsync, ExprCall, FieldPat, FnArg,
Ident, Item, ItemFn, LitInt, LitStr, Pat, PatIdent, PatReference, PatStruct, PatTuple,
PatTupleStruct, PatType, Path, Signature, Stmt, Token, TypePath,
};
/// Instruments a function to create and enter a `tracing` [span] every time
/// the function is called.
///
/// Unless overriden, a span with `info` level will be generated.
/// The generated span's name will be the name of the function.
/// By default, all arguments to the function are included as fields on the
/// span. Arguments that are `tracing` [primitive types] implementing the
/// [`Value` trait] will be recorded as fields of that type. Types which do
/// not implement `Value` will be recorded using [`std::fmt::Debug`].
///
/// [primitive types]: https://docs.rs/tracing/latest/tracing/field/trait.Value.html#foreign-impls
/// [`Value` trait]: https://docs.rs/tracing/latest/tracing/field/trait.Value.html.
///
/// # Overriding Span Attributes
///
/// To change the [name] of the generated span, add a `name` argument to the
/// `#[instrument]` macro, followed by an equals sign and a string literal. For
/// example:
///
/// ```
/// # use tracing_attributes::instrument;
///
/// // The generated span's name will be "my_span" rather than "my_function".
/// #[instrument(name = "my_span")]
/// pub fn my_function() {
/// // ... do something incredibly interesting and important ...
/// }
/// ```
///
/// To override the [target] of the generated span, add a `target` argument to
/// the `#[instrument]` macro, followed by an equals sign and a string literal
/// for the new target. The [module path] is still recorded separately. For
/// example:
///
/// ```
/// pub mod my_module {
/// # use tracing_attributes::instrument;
/// // The generated span's target will be "my_crate::some_special_target",
/// // rather than "my_crate::my_module".
/// #[instrument(target = "my_crate::some_special_target")]
/// pub fn my_function() {
/// // ... all kinds of neat code in here ...
/// }
/// }
/// ```
///
/// Finally, to override the [level] of the generated span, add a `level`
/// argument, followed by an equals sign and a string literal with the name of
/// the desired level. Level names are not case sensitive. For example:
///
/// ```
/// # use tracing_attributes::instrument;
/// // The span's level will be TRACE rather than INFO.
/// #[instrument(level = "trace")]
/// pub fn my_function() {
/// // ... I have written a truly marvelous implementation of this function,
/// // which this example is too narrow to contain ...
/// }
/// ```
///
/// # Skipping Fields
///
/// To skip recording one or more arguments to a function or method, pass
/// the argument's name inside the `skip()` argument on the `#[instrument]`
/// macro. This can be used when an argument to an instrumented function does
/// not implement [`fmt::Debug`], or to exclude an argument with a verbose or
/// costly `Debug` implementation. Note that:
///
/// - multiple argument names can be passed to `skip`.
/// - arguments passed to `skip` do _not_ need to implement `fmt::Debug`.
///
/// You can also use `skip_all` to skip all arguments.
///
/// ## Examples
///
/// ```
/// # use tracing_attributes::instrument;
/// # use std::collections::HashMap;
/// // This type doesn't implement `fmt::Debug`!
/// struct NonDebug;
///
/// // `arg` will be recorded, while `non_debug` will not.
/// #[instrument(skip(non_debug))]
/// fn my_function(arg: usize, non_debug: NonDebug) {
/// // ...
/// }
///
/// // These arguments are huge
/// #[instrument(skip_all)]
/// fn my_big_data_function(large: Vec<u8>, also_large: HashMap<String, String>) {
/// // ...
/// }
/// ```
///
/// Skipping the `self` parameter:
///
/// ```
/// # use tracing_attributes::instrument;
/// #[derive(Debug)]
/// struct MyType {
/// data: Vec<u8>, // Suppose this buffer is often quite long...
/// }
///
/// impl MyType {
/// // Suppose we don't want to print an entire kilobyte of `data`
/// // every time this is called...
/// #[instrument(skip(self))]
/// pub fn my_method(&mut self, an_interesting_argument: usize) {
/// // ... do something (hopefully, using all that `data`!)
/// }
/// }
/// ```
///
/// # Adding Fields
///
/// Additional fields (key-value pairs with arbitrary data) may be added to the
/// generated span using the `fields` argument on the `#[instrument]` macro. Any
/// Rust expression can be used as a field value in this manner. These
/// expressions will be evaluated at the beginning of the function's body, so
/// arguments to the function may be used in these expressions. Field names may
/// also be specified *without* values. Doing so will result in an [empty field]
/// whose value may be recorded later within the function body.
///
/// This supports the same [field syntax] as the `span!` and `event!` macros.
///
/// Note that overlap between the names of fields and (non-skipped) arguments
/// will result in a compile error.
///
/// ## Examples
///
/// Adding a new field based on the value of an argument:
///
/// ```
/// # use tracing_attributes::instrument;
///
/// // This will record a field named "i" with the value of `i` *and* a field
/// // named "next" with the value of `i` + 1.
/// #[instrument(fields(next = i + 1))]
/// pub fn my_function(i: usize) {
/// // ...
/// }
/// ```
///
/// Recording specific properties of a struct as their own fields:
///
/// ```
/// # mod http {
/// # pub struct Error;
/// # pub struct Response<B> { pub(super) _b: std::marker::PhantomData<B> }
/// # pub struct Request<B> { _b: B }
/// # impl<B> std::fmt::Debug for Request<B> {
/// # fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
/// # f.pad("request")
/// # }
/// # }
/// # impl<B> Request<B> {
/// # pub fn uri(&self) -> &str { "fake" }
/// # pub fn method(&self) -> &str { "GET" }
/// # }
/// # }
/// # use tracing_attributes::instrument;
///
/// // This will record the request's URI and HTTP method as their own separate
/// // fields.
/// #[instrument(fields(http.uri = req.uri(), http.method = req.method()))]
/// pub fn handle_request<B>(req: http::Request<B>) -> http::Response<B> {
/// // ... handle the request ...
/// # http::Response { _b: std::marker::PhantomData }
/// }
/// ```
///
/// This can be used in conjunction with `skip` or `skip_all` to record only
/// some fields of a struct:
/// ```
/// # use tracing_attributes::instrument;
/// // Remember the struct with the very large `data` field from the earlier
/// // example? Now it also has a `name`, which we might want to include in
/// // our span.
/// #[derive(Debug)]
/// struct MyType {
/// name: &'static str,
/// data: Vec<u8>,
/// }
///
/// impl MyType {
/// // This will skip the `data` field, but will include `self.name`,
/// // formatted using `fmt::Display`.
/// #[instrument(skip(self), fields(self.name = %self.name))]
/// pub fn my_method(&mut self, an_interesting_argument: usize) {
/// // ... do something (hopefully, using all that `data`!)
/// }
/// }
/// ```
///
/// Adding an empty field to be recorded later:
///
/// ```
/// # use tracing_attributes::instrument;
///
/// // This function does a very interesting and important mathematical calculation.
/// // Suppose we want to record both the inputs to the calculation *and* its result...
/// #[instrument(fields(result))]
/// pub fn do_calculation(input_1: usize, input_2: usize) -> usize {
/// // Rerform the calculation.
/// let result = input_1 + input_2;
///
/// // Record the result as part of the current span.
/// tracing::Span::current().record("result", &result);
///
/// // Now, the result will also be included on this event!
/// tracing::info!("calculation complete!");
///
/// // ... etc ...
/// # 0
/// }
/// ```
///
/// # Examples
///
/// Instrumenting a function:
///
/// ```
/// # use tracing_attributes::instrument;
/// #[instrument]
/// pub fn my_function(my_arg: usize) {
/// // This event will be recorded inside a span named `my_function` with the
/// // field `my_arg`.
/// tracing::info!("inside my_function!");
/// // ...
/// }
/// ```
/// Setting the level for the generated span:
/// ```
/// # use tracing_attributes::instrument;
/// #[instrument(level = "debug")]
/// pub fn my_function() {
/// // ...
/// }
/// ```
/// Overriding the generated span's name:
/// ```
/// # use tracing_attributes::instrument;
/// #[instrument(name = "my_name")]
/// pub fn my_function() {
/// // ...
/// }
/// ```
/// Overriding the generated span's target:
/// ```
/// # use tracing_attributes::instrument;
/// #[instrument(target = "my_target")]
/// pub fn my_function() {
/// // ...
/// }
/// ```
///
/// To skip recording an argument, pass the argument's name to the `skip`:
///
/// ```
/// # use tracing_attributes::instrument;
/// struct NonDebug;
///
/// #[instrument(skip(non_debug))]
/// fn my_function(arg: usize, non_debug: NonDebug) {
/// // ...
/// }
/// ```
///
/// To add an additional context to the span, pass key-value pairs to `fields`:
///
/// ```
/// # use tracing_attributes::instrument;
/// #[instrument(fields(foo="bar", id=1, show=true))]
/// fn my_function(arg: usize) {
/// // ...
/// }
/// ```
///
/// If the function returns a `Result<T, E>` and `E` implements `std::fmt::Display`, you can add
/// `err` to emit error events when the function returns `Err`:
///
/// ```
/// # use tracing_attributes::instrument;
/// #[instrument(err)]
/// fn my_function(arg: usize) -> Result<(), std::io::Error> {
/// Ok(())
/// }
/// ```
///
/// `async fn`s may also be instrumented:
///
/// ```
/// # use tracing_attributes::instrument;
/// #[instrument]
/// pub async fn my_function() -> Result<(), ()> {
/// // ...
/// # Ok(())
/// }
/// ```
///
/// It also works with [async-trait](https://crates.io/crates/async-trait)
/// (a crate that allows defining async functions in traits,
/// something not currently possible in Rust),
/// and hopefully most libraries that exhibit similar behaviors:
///
/// ```
/// # use tracing::instrument;
/// use async_trait::async_trait;
///
/// #[async_trait]
/// pub trait Foo {
/// async fn foo(&self, arg: usize);
/// }
///
/// #[derive(Debug)]
/// struct FooImpl(usize);
///
/// #[async_trait]
/// impl Foo for FooImpl {
/// #[instrument(fields(value = self.0, tmp = std::any::type_name::<Self>()))]
/// async fn foo(&self, arg: usize) {}
/// }
/// ```
///
/// Note than on `async-trait` <= 0.1.43, references to the `Self`
/// type inside the `fields` argument were only allowed when the instrumented
/// function is a method (i.e., the function receives `self` as an argument).
/// For example, this *used to not work* because the instrument function
/// didn't receive `self`:
/// ```
/// # use tracing::instrument;
/// use async_trait::async_trait;
///
/// #[async_trait]
/// pub trait Bar {
/// async fn bar();
/// }
///
/// #[derive(Debug)]
/// struct BarImpl(usize);
///
/// #[async_trait]
/// impl Bar for BarImpl {
/// #[instrument(fields(tmp = std::any::type_name::<Self>()))]
/// async fn bar() {}
/// }
/// ```
/// Instead, you should manually rewrite any `Self` types as the type for
/// which you implement the trait: `#[instrument(fields(tmp = std::any::type_name::<Bar>()))]`
/// (or maybe you can just bump `async-trait`).
///
/// [span]: https://docs.rs/tracing/latest/tracing/span/index.html
/// [name]: https://docs.rs/tracing/latest/tracing/struct.Metadata.html#method.name
/// [target]: https://docs.rs/tracing/latest/tracing/struct.Metadata.html#method.target
/// [level]: https://docs.rs/tracing/latest/tracing/struct.Level.html
/// [module path]: https://docs.rs/tracing/latest/tracing/struct.Metadata.html#method.module_path
/// [`INFO`]: https://docs.rs/tracing/latest/tracing/struct.Level.html#associatedconstant.INFO
/// [empty field]: https://docs.rs/tracing/latest/tracing/field/struct.Empty.html
/// [field syntax]: https://docs.rs/tracing/latest/tracing/#recording-fields
/// [`fmt::Debug`]: https://doc.rust-lang.org/std/fmt/trait.Debug.html
#[proc_macro_attribute]
pub fn instrument(
args: proc_macro::TokenStream,
item: proc_macro::TokenStream,
) -> proc_macro::TokenStream {
let input = syn::parse_macro_input!(item as ItemFn);
let args = syn::parse_macro_input!(args as InstrumentArgs);
let instrumented_function_name = input.sig.ident.to_string();
// check for async_trait-like patterns in the block, and instrument
// the future instead of the wrapper
if let Some(internal_fun) = get_async_trait_info(&input.block, input.sig.asyncness.is_some()) {
// let's rewrite some statements!
let mut out_stmts: Vec<TokenStream> = input
.block
.stmts
.iter()
.map(|stmt| stmt.to_token_stream())
.collect();
if let Some((iter, _stmt)) = input
.block
.stmts
.iter()
.enumerate()
.find(|(_iter, stmt)| *stmt == internal_fun.source_stmt)
{
// instrument the future by rewriting the corresponding statement
out_stmts[iter] = match internal_fun.kind {
// async-trait <= 0.1.43
AsyncTraitKind::Function(fun) => gen_function(
fun,
args,
instrumented_function_name.as_str(),
internal_fun.self_type.as_ref(),
),
// async-trait >= 0.1.44
AsyncTraitKind::Async(async_expr) => {
let instrumented_block = gen_block(
&async_expr.block,
&input.sig.inputs,
true,
args,
instrumented_function_name.as_str(),
None,
);
let async_attrs = &async_expr.attrs;
quote! {
Box::pin(#(#async_attrs) * async move { #instrumented_block })
}
}
};
}
let vis = &input.vis;
let sig = &input.sig;
let attrs = &input.attrs;
quote!(
#(#attrs) *
#vis #sig {
#(#out_stmts) *
}
)
.into()
} else {
gen_function(&input, args, instrumented_function_name.as_str(), None).into()
}
}
/// Given an existing function, generate an instrumented version of that function
fn gen_function(
input: &ItemFn,
args: InstrumentArgs,
instrumented_function_name: &str,
self_type: Option<&syn::TypePath>,
) -> proc_macro2::TokenStream {
// these are needed ahead of time, as ItemFn contains the function body _and_
// isn't representable inside a quote!/quote_spanned! macro
// (Syn's ToTokens isn't implemented for ItemFn)
let ItemFn {
attrs,
vis,
block,
sig,
..
} = input;
let Signature {
output: return_type,
inputs: params,
unsafety,
asyncness,
constness,
abi,
ident,
generics:
syn::Generics {
params: gen_params,
where_clause,
..
},
..
} = sig;
let warnings = args.warnings();
let body = gen_block(
block,
params,
asyncness.is_some(),
args,
instrumented_function_name,
self_type,
);
quote!(
#(#attrs) *
#vis #constness #unsafety #asyncness #abi fn #ident<#gen_params>(#params) #return_type
#where_clause
{
#warnings
#body
}
)
}
/// Instrument a block
fn gen_block(
block: &Block,
params: &Punctuated<FnArg, Token![,]>,
async_context: bool,
mut args: InstrumentArgs,
instrumented_function_name: &str,
self_type: Option<&syn::TypePath>,
) -> proc_macro2::TokenStream {
let err = args.err;
// generate the span's name
let span_name = args
// did the user override the span's name?
.name
.as_ref()
.map(|name| quote!(#name))
.unwrap_or_else(|| quote!(#instrumented_function_name));
let level = args.level();
// generate this inside a closure, so we can return early on errors.
let span = (|| {
// Pull out the arguments-to-be-skipped first, so we can filter results
// below.
let param_names: Vec<(Ident, (Ident, RecordType))> = params
.clone()
.into_iter()
.flat_map(|param| match param {
FnArg::Typed(PatType { pat, ty, .. }) => {
param_names(*pat, RecordType::parse_from_ty(&*ty))
}
FnArg::Receiver(_) => Box::new(iter::once((
Ident::new("self", param.span()),
RecordType::Debug,
))),
})
// Little dance with new (user-exposed) names and old (internal)
// names of identifiers. That way, we could do the following
// even though async_trait (<=0.1.43) rewrites "self" as "_self":
// ```
// #[async_trait]
// impl Foo for FooImpl {
// #[instrument(skip(self))]
// async fn foo(&self, v: usize) {}
// }
// ```
.map(|(x, record_type)| {
// if we are inside a function generated by async-trait <=0.1.43, we need to
// take care to rewrite "_self" as "self" for 'user convenience'
if self_type.is_some() && x == "_self" {
(Ident::new("self", x.span()), (x, record_type))
} else {
(x.clone(), (x, record_type))
}
})
.collect();
for skip in &args.skips {
if !param_names.iter().map(|(user, _)| user).any(|y| y == skip) {
return quote_spanned! {skip.span()=>
compile_error!("attempting to skip non-existent parameter")
};
}
}
let target = args.target();
// filter out skipped fields
let quoted_fields: Vec<_> = param_names
.iter()
.filter(|(param, _)| {
if args.skip_all || args.skips.contains(param) {
return false;
}
// If any parameters have the same name as a custom field, skip
// and allow them to be formatted by the custom field.
if let Some(ref fields) = args.fields {
fields.0.iter().all(|Field { ref name, .. }| {
let first = name.first();
first != name.last() || !first.iter().any(|name| name == ¶m)
})
} else {
true
}
})
.map(|(user_name, (real_name, record_type))| match record_type {
RecordType::Value => quote!(#user_name = #real_name),
RecordType::Debug => quote!(#user_name = tracing::field::debug(&#real_name)),
})
.collect();
// replace every use of a variable with its original name
if let Some(Fields(ref mut fields)) = args.fields {
let mut replacer = IdentAndTypesRenamer {
idents: param_names.into_iter().map(|(a, (b, _))| (a, b)).collect(),
types: Vec::new(),
};
// when async-trait <=0.1.43 is in use, replace instances
// of the "Self" type inside the fields values
if let Some(self_type) = self_type {
replacer.types.push(("Self", self_type.clone()));
}
for e in fields.iter_mut().filter_map(|f| f.value.as_mut()) {
syn::visit_mut::visit_expr_mut(&mut replacer, e);
}
}
let custom_fields = &args.fields;
quote!(tracing::span!(
target: #target,
#level,
#span_name,
#(#quoted_fields,)*
#custom_fields
))
})();
// Generate the instrumented function body.
// If the function is an `async fn`, this will wrap it in an async block,
// which is `instrument`ed using `tracing-futures`. Otherwise, this will
// enter the span and then perform the rest of the body.
// If `err` is in args, instrument any resulting `Err`s.
if async_context {
let mk_fut = if err {
quote_spanned!(block.span()=>
async move {
match async move { #block }.await {
#[allow(clippy::unit_arg)]
Ok(x) => Ok(x),
Err(e) => {
tracing::error!(error = %e);
Err(e)
}
}
}
)
} else {
quote_spanned!(block.span()=>
async move { #block }
)
};
return quote!(
let __tracing_attr_span = #span;
let __tracing_instrument_future = #mk_fut;
if !__tracing_attr_span.is_disabled() {
tracing::Instrument::instrument(
__tracing_instrument_future,
__tracing_attr_span
)
.await
} else {
__tracing_instrument_future.await
}
);
}
let span = quote!(
// These variables are left uninitialized and initialized only
// if the tracing level is statically enabled at this point.
// While the tracing level is also checked at span creation
// time, that will still create a dummy span, and a dummy guard
// and drop the dummy guard later. By lazily initializing these
// variables, Rust will generate a drop flag for them and thus
// only drop the guard if it was created. This creates code that
// is very straightforward for LLVM to optimize out if the tracing
// level is statically disabled, while not causing any performance
// regression in case the level is enabled.
let __tracing_attr_span;
let __tracing_attr_guard;
if tracing::level_enabled!(#level) {
__tracing_attr_span = #span;
__tracing_attr_guard = __tracing_attr_span.enter();
}
);
if err {
return quote_spanned!(block.span()=>
#span
#[allow(clippy::redundant_closure_call)]
match (move || #block)() {
#[allow(clippy::unit_arg)]
Ok(x) => Ok(x),
Err(e) => {
tracing::error!(error = %e);
Err(e)
}
}
);
}
quote_spanned!(block.span() =>
// Because `quote` produces a stream of tokens _without_ whitespace, the
// `if` and the block will appear directly next to each other. This
// generates a clippy lint about suspicious `if/else` formatting.
// Therefore, suppress the lint inside the generated code...
#[allow(clippy::suspicious_else_formatting)]
{
#span
// ...but turn the lint back on inside the function body.
#[warn(clippy::suspicious_else_formatting)]
#block
}
)
}
#[derive(Default, Debug)]
struct InstrumentArgs {
level: Option<Level>,
name: Option<LitStr>,
target: Option<LitStr>,
skips: HashSet<Ident>,
skip_all: bool,
fields: Option<Fields>,
err: bool,
/// Errors describing any unrecognized parse inputs that we skipped.
parse_warnings: Vec<syn::Error>,
}
impl InstrumentArgs {
fn level(&self) -> impl ToTokens {
fn is_level(lit: &LitInt, expected: u64) -> bool {
match lit.base10_parse::<u64>() {
Ok(value) => value == expected,
Err(_) => false,
}
}
match &self.level {
Some(Level::Str(ref lit)) if lit.value().eq_ignore_ascii_case("trace") => {
quote!(tracing::Level::TRACE)
}
Some(Level::Str(ref lit)) if lit.value().eq_ignore_ascii_case("debug") => {
quote!(tracing::Level::DEBUG)
}
Some(Level::Str(ref lit)) if lit.value().eq_ignore_ascii_case("info") => {
quote!(tracing::Level::INFO)
}
Some(Level::Str(ref lit)) if lit.value().eq_ignore_ascii_case("warn") => {
quote!(tracing::Level::WARN)
}
Some(Level::Str(ref lit)) if lit.value().eq_ignore_ascii_case("error") => {
quote!(tracing::Level::ERROR)
}
Some(Level::Int(ref lit)) if is_level(lit, 1) => quote!(tracing::Level::TRACE),
Some(Level::Int(ref lit)) if is_level(lit, 2) => quote!(tracing::Level::DEBUG),
Some(Level::Int(ref lit)) if is_level(lit, 3) => quote!(tracing::Level::INFO),
Some(Level::Int(ref lit)) if is_level(lit, 4) => quote!(tracing::Level::WARN),
Some(Level::Int(ref lit)) if is_level(lit, 5) => quote!(tracing::Level::ERROR),
Some(Level::Path(ref pat)) => quote!(#pat),
Some(lit) => quote! {
compile_error!(
"unknown verbosity level, expected one of \"trace\", \
\"debug\", \"info\", \"warn\", or \"error\", or a number 1-5"
)
},
None => quote!(tracing::Level::INFO),
}
}
fn target(&self) -> impl ToTokens {
if let Some(ref target) = self.target {
quote!(#target)
} else {
quote!(module_path!())
}
}
/// Generate "deprecation" warnings for any unrecognized attribute inputs
/// that we skipped.
///
/// For backwards compatibility, we need to emit compiler warnings rather
/// than errors for unrecognized inputs. Generating a fake deprecation is
/// the only way to do this on stable Rust right now.
fn warnings(&self) -> impl ToTokens {
let warnings = self.parse_warnings.iter().map(|err| {
let msg = format!("found unrecognized input, {}", err);
let msg = LitStr::new(&msg, err.span());
// TODO(eliza): This is a bit of a hack, but it's just about the
// only way to emit warnings from a proc macro on stable Rust.
// Eventually, when the `proc_macro::Diagnostic` API stabilizes, we
// should definitely use that instead.
quote_spanned! {err.span()=>
#[warn(deprecated)]
{
#[deprecated(since = "not actually deprecated", note = #msg)]
const TRACING_INSTRUMENT_WARNING: () = ();
let _ = TRACING_INSTRUMENT_WARNING;
}
}
});
quote! {
{ #(#warnings)* }
}
}
}
impl Parse for InstrumentArgs {
fn parse(input: ParseStream<'_>) -> syn::Result<Self> {
let mut args = Self::default();
while !input.is_empty() {
let lookahead = input.lookahead1();
if lookahead.peek(kw::name) {
if args.name.is_some() {
return Err(input.error("expected only a single `name` argument"));
}
let name = input.parse::<StrArg<kw::name>>()?.value;
args.name = Some(name);
} else if lookahead.peek(LitStr) {
// XXX: apparently we support names as either named args with an
// sign, _or_ as unnamed string literals. That's weird, but
// changing it is apparently breaking.
if args.name.is_some() {
return Err(input.error("expected only a single `name` argument"));
}
args.name = Some(input.parse()?);
} else if lookahead.peek(kw::target) {
if args.target.is_some() {
return Err(input.error("expected only a single `target` argument"));
}
let target = input.parse::<StrArg<kw::target>>()?.value;
args.target = Some(target);
} else if lookahead.peek(kw::level) {
if args.level.is_some() {
return Err(input.error("expected only a single `level` argument"));
}
args.level = Some(input.parse()?);
} else if lookahead.peek(kw::skip) {
if !args.skips.is_empty() {
return Err(input.error("expected only a single `skip` argument"));
}
if args.skip_all {
return Err(input.error("expected either `skip` or `skip_all` argument"));
}
let Skips(skips) = input.parse()?;
args.skips = skips;
} else if lookahead.peek(kw::skip_all) {
if args.skip_all {
return Err(input.error("expected only a single `skip_all` argument"));
}
if !args.skips.is_empty() {
return Err(input.error("expected either `skip` or `skip_all` argument"));
}
let _ = input.parse::<kw::skip_all>()?;
args.skip_all = true;
} else if lookahead.peek(kw::fields) {
if args.fields.is_some() {
return Err(input.error("expected only a single `fields` argument"));
}
args.fields = Some(input.parse()?);
} else if lookahead.peek(kw::err) {
let _ = input.parse::<kw::err>()?;
args.err = true;
} else if lookahead.peek(Token![,]) {
let _ = input.parse::<Token![,]>()?;
} else {
// We found a token that we didn't expect!
// We want to emit warnings for these, rather than errors, so
// we'll add it to the list of unrecognized inputs we've seen so
// far and keep going.
args.parse_warnings.push(lookahead.error());
// Parse the unrecognized token tree to advance the parse
// stream, and throw it away so we can keep parsing.
let _ = input.parse::<proc_macro2::TokenTree>();
}
}
Ok(args)
}
}
struct StrArg<T> {
value: LitStr,
_p: std::marker::PhantomData<T>,
}
impl<T: Parse> Parse for StrArg<T> {
fn parse(input: ParseStream<'_>) -> syn::Result<Self> {
let _ = input.parse::<T>()?;
let _ = input.parse::<Token![=]>()?;
let value = input.parse()?;
Ok(Self {
value,
_p: std::marker::PhantomData,
})
}
}
struct Skips(HashSet<Ident>);
impl Parse for Skips {
fn parse(input: ParseStream<'_>) -> syn::Result<Self> {
let _ = input.parse::<kw::skip>();
let content;
let _ = syn::parenthesized!(content in input);
let names: Punctuated<Ident, Token![,]> = content.parse_terminated(Ident::parse_any)?;
let mut skips = HashSet::new();
for name in names {
if skips.contains(&name) {
return Err(syn::Error::new(
name.span(),
"tried to skip the same field twice",
));
} else {
skips.insert(name);
}
}
Ok(Self(skips))
}
}
#[derive(Debug)]
struct Fields(Punctuated<Field, Token![,]>);
#[derive(Debug)]
struct Field {
name: Punctuated<Ident, Token![.]>,
value: Option<Expr>,
kind: FieldKind,
}
#[derive(Debug, Eq, PartialEq)]
enum FieldKind {
Debug,
Display,
Value,
}
impl Parse for Fields {
fn parse(input: ParseStream<'_>) -> syn::Result<Self> {
let _ = input.parse::<kw::fields>();
let content;
let _ = syn::parenthesized!(content in input);
let fields: Punctuated<_, Token![,]> = content.parse_terminated(Field::parse)?;
Ok(Self(fields))
}
}
impl ToTokens for Fields {
fn to_tokens(&self, tokens: &mut TokenStream) {
self.0.to_tokens(tokens)
}
}
impl Parse for Field {
fn parse(input: ParseStream<'_>) -> syn::Result<Self> {
let mut kind = FieldKind::Value;
if input.peek(Token![%]) {
input.parse::<Token![%]>()?;
kind = FieldKind::Display;
} else if input.peek(Token![?]) {
input.parse::<Token![?]>()?;
kind = FieldKind::Debug;
};
let name = Punctuated::parse_separated_nonempty_with(input, Ident::parse_any)?;
let value = if input.peek(Token![=]) {
input.parse::<Token![=]>()?;
if input.peek(Token![%]) {
input.parse::<Token![%]>()?;
kind = FieldKind::Display;
} else if input.peek(Token![?]) {
input.parse::<Token![?]>()?;
kind = FieldKind::Debug;
};
Some(input.parse()?)
} else {
None
};
Ok(Self { name, value, kind })
}
}
impl ToTokens for Field {
fn to_tokens(&self, tokens: &mut TokenStream) {
if let Some(ref value) = self.value {
let name = &self.name;
let kind = &self.kind;
tokens.extend(quote! {
#name = #kind#value
})
} else if self.kind == FieldKind::Value {
// XXX(eliza): I don't like that fields without values produce
// empty fields rather than local variable shorthand...but,
// we've released a version where field names without values in
// `instrument` produce empty field values, so changing it now
// is a breaking change. agh.
let name = &self.name;
tokens.extend(quote!(#name = tracing::field::Empty))
} else {
self.kind.to_tokens(tokens);
self.name.to_tokens(tokens);
}
}
}
impl ToTokens for FieldKind {
fn to_tokens(&self, tokens: &mut TokenStream) {
match self {
FieldKind::Debug => tokens.extend(quote! { ? }),
FieldKind::Display => tokens.extend(quote! { % }),
_ => {}
}
}
}
#[derive(Debug)]
enum Level {
Str(LitStr),
Int(LitInt),
Path(Path),
}
impl Parse for Level {
fn parse(input: ParseStream<'_>) -> syn::Result<Self> {
let _ = input.parse::<kw::level>()?;
let _ = input.parse::<Token![=]>()?;
let lookahead = input.lookahead1();
if lookahead.peek(LitStr) {
Ok(Self::Str(input.parse()?))
} else if lookahead.peek(LitInt) {
Ok(Self::Int(input.parse()?))
} else if lookahead.peek(Ident) {
Ok(Self::Path(input.parse()?))
} else {
Err(lookahead.error())
}
}
}
/// Indicates whether a field should be recorded as `Value` or `Debug`.
enum RecordType {
/// The field should be recorded using its `Value` implementation.
Value,
/// The field should be recorded using `tracing::field::debug()`.
Debug,
}
impl RecordType {
/// Array of primitive types which should be recorded as [RecordType::Value].
const TYPES_FOR_VALUE: &'static [&'static str] = &[
"bool",
"str",
"u8",
"i8",
"u16",
"i16",
"u32",
"i32",
"u64",
"i64",
"f32",
"f64",
"usize",
"isize",
"NonZeroU8",
"NonZeroI8",
"NonZeroU16",
"NonZeroI16",
"NonZeroU32",
"NonZeroI32",
"NonZeroU64",
"NonZeroI64",
"NonZeroUsize",
"NonZeroIsize",
"Wrapping",
];
/// Parse `RecordType` from [syn::Type] by looking up
/// the [RecordType::TYPES_FOR_VALUE] array.
fn parse_from_ty(ty: &syn::Type) -> Self {
match ty {
syn::Type::Path(syn::TypePath { path, .. })
if path
.segments
.iter()
.last()
.map(|path_segment| {
let ident = path_segment.ident.to_string();
Self::TYPES_FOR_VALUE.iter().any(|&t| t == ident)
})
.unwrap_or(false) =>
{
RecordType::Value
}
syn::Type::Reference(syn::TypeReference { elem, .. }) => {
RecordType::parse_from_ty(&*elem)
}
_ => RecordType::Debug,
}
}
}
fn param_names(pat: Pat, record_type: RecordType) -> Box<dyn Iterator<Item = (Ident, RecordType)>> {
match pat {
Pat::Ident(PatIdent { ident, .. }) => Box::new(iter::once((ident, record_type))),
Pat::Reference(PatReference { pat, .. }) => param_names(*pat, record_type),
// We can't get the concrete type of fields in the struct/tuple
// patterns by using `syn`. e.g. `fn foo(Foo { x, y }: Foo) {}`.
// Therefore, the struct/tuple patterns in the arguments will just
// always be recorded as `RecordType::Debug`.
Pat::Struct(PatStruct { fields, .. }) => Box::new(
fields
.into_iter()
.flat_map(|FieldPat { pat, .. }| param_names(*pat, RecordType::Debug)),
),
Pat::Tuple(PatTuple { elems, .. }) => Box::new(
elems
.into_iter()
.flat_map(|p| param_names(p, RecordType::Debug)),
),
Pat::TupleStruct(PatTupleStruct {
pat: PatTuple { elems, .. },
..
}) => Box::new(
elems
.into_iter()
.flat_map(|p| param_names(p, RecordType::Debug)),
),
// The above *should* cover all cases of irrefutable patterns,
// but we purposefully don't do any funny business here
// (such as panicking) because that would obscure rustc's
// much more informative error message.
_ => Box::new(iter::empty()),
}
}
mod kw {
syn::custom_keyword!(fields);
syn::custom_keyword!(skip);
syn::custom_keyword!(skip_all);
syn::custom_keyword!(level);
syn::custom_keyword!(target);
syn::custom_keyword!(name);
syn::custom_keyword!(err);
}
enum AsyncTraitKind<'a> {
// old construction. Contains the function
Function(&'a ItemFn),
// new construction. Contains a reference to the async block
Async(&'a ExprAsync),
}
struct AsyncTraitInfo<'a> {
// statement that must be patched
source_stmt: &'a Stmt,
kind: AsyncTraitKind<'a>,
self_type: Option<syn::TypePath>,
}
// Get the AST of the inner function we need to hook, if it was generated
// by async-trait.
// When we are given a function annotated by async-trait, that function
// is only a placeholder that returns a pinned future containing the
// user logic, and it is that pinned future that needs to be instrumented.
// Were we to instrument its parent, we would only collect information
// regarding the allocation of that future, and not its own span of execution.
// Depending on the version of async-trait, we inspect the block of the function
// to find if it matches the pattern
// `async fn foo<...>(...) {...}; Box::pin(foo<...>(...))` (<=0.1.43), or if
// it matches `Box::pin(async move { ... }) (>=0.1.44). We the return the
// statement that must be instrumented, along with some other informations.
// 'gen_body' will then be able to use that information to instrument the
// proper function/future.
// (this follows the approach suggested in
// https://github.com/dtolnay/async-trait/issues/45#issuecomment-571245673)
fn get_async_trait_info(block: &Block, block_is_async: bool) -> Option<AsyncTraitInfo<'_>> {
// are we in an async context? If yes, this isn't a async_trait-like pattern
if block_is_async {
return None;
}
// list of async functions declared inside the block
let inside_funs = block.stmts.iter().filter_map(|stmt| {
if let Stmt::Item(Item::Fn(fun)) = &stmt {
// If the function is async, this is a candidate
if fun.sig.asyncness.is_some() {
return Some((stmt, fun));
}
}
None
});
// last expression of the block (it determines the return value
// of the block, so that if we are working on a function whose
// `trait` or `impl` declaration is annotated by async_trait,
// this is quite likely the point where the future is pinned)
let (last_expr_stmt, last_expr) = block.stmts.iter().rev().find_map(|stmt| {
if let Stmt::Expr(expr) = stmt {
Some((stmt, expr))
} else {
None
}
})?;
// is the last expression a function call?
let (outside_func, outside_args) = match last_expr {
Expr::Call(ExprCall { func, args, .. }) => (func, args),
_ => return None,
};
// is it a call to `Box::pin()`?
let path = match outside_func.as_ref() {
Expr::Path(path) => &path.path,
_ => return None,
};
if !path_to_string(path).ends_with("Box::pin") {
return None;
}
// Does the call take an argument? If it doesn't,
// it's not gonna compile anyway, but that's no reason
// to (try to) perform an out of bounds access
if outside_args.is_empty() {
return None;
}
// Is the argument to Box::pin an async block that
// captures its arguments?
if let Expr::Async(async_expr) = &outside_args[0] {
// check that the move 'keyword' is present
async_expr.capture?;
return Some(AsyncTraitInfo {
source_stmt: last_expr_stmt,
kind: AsyncTraitKind::Async(async_expr),
self_type: None,
});
}
// Is the argument to Box::pin a function call itself?
let func = match &outside_args[0] {
Expr::Call(ExprCall { func, .. }) => func,
_ => return None,
};
// "stringify" the path of the function called
let func_name = match **func {
Expr::Path(ref func_path) => path_to_string(&func_path.path),
_ => return None,
};
// Was that function defined inside of the current block?
// If so, retrieve the statement where it was declared and the function itself
let (stmt_func_declaration, func) = inside_funs
.into_iter()
.find(|(_, fun)| fun.sig.ident == func_name)?;
// If "_self" is present as an argument, we store its type to be able to rewrite "Self" (the
// parameter type) with the type of "_self"
let mut self_type = None;
for arg in &func.sig.inputs {
if let FnArg::Typed(ty) = arg {
if let Pat::Ident(PatIdent { ref ident, .. }) = *ty.pat {
if ident == "_self" {
let mut ty = *ty.ty.clone();
// extract the inner type if the argument is "&self" or "&mut self"
if let syn::Type::Reference(syn::TypeReference { elem, .. }) = ty {
ty = *elem;
}
if let syn::Type::Path(tp) = ty {
self_type = Some(tp);
break;
}
}
}
}
}
Some(AsyncTraitInfo {
source_stmt: stmt_func_declaration,
kind: AsyncTraitKind::Function(func),
self_type,
})
}
// Return a path as a String
fn path_to_string(path: &Path) -> String {
use std::fmt::Write;
// some heuristic to prevent too many allocations
let mut res = String::with_capacity(path.segments.len() * 5);
for i in 0..path.segments.len() {
write!(&mut res, "{}", path.segments[i].ident)
.expect("writing to a String should never fail");
if i < path.segments.len() - 1 {
res.push_str("::");
}
}
res
}
/// A visitor struct to replace idents and types in some piece
/// of code (e.g. the "self" and "Self" tokens in user-supplied
/// fields expressions when the function is generated by an old
/// version of async-trait).
struct IdentAndTypesRenamer<'a> {
types: Vec<(&'a str, TypePath)>,
idents: Vec<(Ident, Ident)>,
}
impl<'a> syn::visit_mut::VisitMut for IdentAndTypesRenamer<'a> {
// we deliberately compare strings because we want to ignore the spans
// If we apply clippy's lint, the behavior changes
#[allow(clippy::cmp_owned)]
fn visit_ident_mut(&mut self, id: &mut Ident) {
for (old_ident, new_ident) in &self.idents {
if id.to_string() == old_ident.to_string() {
*id = new_ident.clone();
}
}
}
fn visit_type_mut(&mut self, ty: &mut syn::Type) {
for (type_name, new_type) in &self.types {
if let syn::Type::Path(TypePath { path, .. }) = ty {
if path_to_string(path) == *type_name {
*ty = syn::Type::Path(new_type.clone());
}
}
}
}
}
// A visitor struct that replace an async block by its patched version
struct AsyncTraitBlockReplacer<'a> {
block: &'a Block,
patched_block: Block,
}
impl<'a> syn::visit_mut::VisitMut for AsyncTraitBlockReplacer<'a> {
fn visit_block_mut(&mut self, i: &mut Block) {
if i == self.block {
*i = self.patched_block.clone();
}
}
}